134 resultados para [Beta]-hydroxy [alpha]-amino acids
Resumo:
This work aimed to explore evaluated the effects of the increased of hydrostatic pressure on a defined bacterial community on aggregates formed from an axenic culture of marine diatoms by simulating sedimentation to the deep sea by increase of hydrostatic pressure up to 30 bar (equivalent to 3000 m water depth) against control at ambient surface pressure. Our hypothesis was that microbial colonization and community composition and thus microbial OM turnover is greatly affected by changes in hydrostatic pressure during sinking to the deep ocean.
Resumo:
Sediment and interstitial water from Sites 651 and 653 (ODP Leg 107) were investigated by organic geochemical methods to characterize labile organic compound classes (amino compounds and carbohydrates) and to evaluate their progressive diagenetic and thermal degradation in deep-sea sediments. Downhole distribution of dissolved organic carbon (DOC) appears related to redox zones associated with bacterial activity and of diagenetic recrystallization of biogenic tests and not so much to organic matter concentrations in ambient sediments. DOC ranges from 250 to 8300 µmol/L (3-100.1 ppm). Amino acids contribute 10%-0.3% of DOC; carbohydrates range from 78 to 5 µmol/L. Rate of degradation of amino acids by thermal effects and/or bacterial activity at both sites (significantly different in sedimentation rates: average 41 cm/1000 yr in the top 300 m at Site 651, average 3.9 cm/1000 yr in the Pliocene/Quaternary sequence at Site 653 to 220 mbsf) is more dependent on exposure time rather than on the depth within the sediment column. Variability in neutral, acidic, and basic amino acid fractions of total amino acids (with a range of 1.1-0.02 µmol/g sediment; up to 2.5% of organic carbon) varies with carbonate content and by differences in thermal stability of amino acids. Distribution patterns of monosaccharides are interpreted to result from differences in organic matter sources, sedimentation rates, and the degree of organic matter decomposition prior to and subsequent to burial. Total particulate carbohydrates range from 1.82 to 0.21 µmol/g sediment and contribute about 8% to the sedimentary organic matter. Investigation of trace metals in the interstitial waters did not show any correlation of either DOC, amino compounds, or carbohydrates.
Resumo:
Elemental composition, functional groups, and molecular mass distribution were determined in humic acids from the Western Pacific abyssal and coastal bottom sediments. Humic acid structure was studied by oxidative degradation with alkaline nitrobenzene and potassium permanganate, p-coumaric, guaiacilic, and syringilic structural units typical for lignin of terrestrial plants were identified in humic acids by chromatographic analysis of oxidation products. Polysubstituted and polycondensed aromatic systems with minor proportion of aliphatic structures were basic structural units of humic acids in abyssal sediments.
Resumo:
Proteins and their amino acid building blocks form a major group of biomolecules in all organisms. In the sedimentary environment, proteins and amino acids have two sources: (1) soft tissues and detritus and (2) biotic skeletal structures, dominantly from calcium carbonate-secreting organisms. The focus of this report is on D/L ratios and concentrations of selected amino acids in interstitial waters collected during ODP Leg 201. The Peru margin sites are generally low in carbonates, whereas the open-ocean sites are more carbonate rich. Seifert et al. (1990, doi:10.2973/odp.proc.sr.112.152.1990) reported amino acid concentrations in interstitial waters from Site 681 (ODP Leg 112) comparable to Leg 201 Site 1229.