120 resultados para kruppel like factor 5
Resumo:
Foraminifera counts and climatic assemblages from the Tore Seamount are used to approach the glacial and interglacial changes in temperature and productivity on the Iberian Margin over the last 225 kyr. Chronostratigraphy is based on Globigerinoides ruber and Globigerina bulloides oxygen isotopes and supported by foraminifera and carbonate stadial fluctuations. Foraminifera indicate cooling from late interglacial stage 5 to the beginning of Termination I (TI). Neogloboquadnna pachyderma-s reflects cold conditions during glacial stages 4-2. In contrast, glacial stage 6 is dominated by warmer N. pachyderma-d and dutertrei and a restricted arctic assemblage. Past sea surface temperatures confirm the general cooling, reaching 4.3°C (SIMMAX.28) during stage 2. Multiple productivity proxies such as organic carbon, productivity-related foraminifera, and delta13C constrain the changes observed. A productivity increase occurs after interglacial stage 5, enhanced from late glacial stage 3 to TI Present-day satellite-detected phytoplankton plumes off Portugal would have accounted in the past glacial stages for the general productivity increase over the Tore. On top of this, welldefined peaks of organic carbon and productivity-related foraminifera correspond with Heinrich events 1-4.
Resumo:
Fifty short sediment cores collected with a multiple corer and five box cores from the central Arctic Ocean were analysed to study the ecology and distribution of benthic foraminifers. To work out living faunal associations, standing stock and diversity, separate analyses of living (Rose Bengal stained) and dead foraminifers were carried out for the sediment surface. The size fractions between 63 and 125 µm and >125 µm were counted separately to allow comparison with former Arctic studies and with studies from the adjacent Norwegian-Greenland Sea, Barents Sea and the North Atlantic Ocean. Benthic foraminiferal associations are mainly controlled by the availability of food, and competition for food, while water mass characteristics, bottom current activity, substrate composition, and water depth are of minor importance. Off Spitsbergen in seasonally ice-free areas, high primary production rates are reflected by high standing stocks, high diversities, and foraminiferal associations (>125 µm) that are similar to those of the Norwegian-Greenland Sea. Generally, in seasonally ice-free areas standing stock and diversity increase with increasing food supply. In the central Arctic Ocean, the oligotrophic permanently ice-covered areas are dominated by epibenthic species. The limited food availability is reflected by very low standing stocks and low diversities. Most of these foraminiferal associations do not correspond to those of the Norwegian-Greenland Sea. The dominant associations include simple agglutinated species such as Sorosphaerae, Placopsilinellae, Komokiacea and Aschemonellae, as well as small calcareous species such as Stetsonia horvathi and Epistominella arctica. Those of the foraminiferal species that usually thrive under seasonally ice-free conditions in middle bathyal to lower bathyal water depth are found under permanently ice-covered conditions in water depths about 1000 m shallower, if present at all.
Resumo:
A series of cores from east of New Zealand have been examined to determine the paleoceanographic history of the late Quaternary in the SW Pacific using planktonic foraminiferal data. Distinct shifts of species can be seen between glacial and interglacial times especially south of Chatham Rise east of South Island. Foraminiferal fragmentation ratios and benthic/planktonic foraminiferal ratios both show increased dissolution during glacials, especially isotope stage 2 to the south of Chatham Rise. The present-day Subtropical Convergence appears to be tied to the Chatham Rise at 44°S, but during glacial times this rise separated cold water to the south from much warmer water to the north, with an associated strong thermal gradient across the rise. We estimate that this gradient could have presented as much as an 8°C temperature change across 4° of latitude during the maximum of the last ice age. There is only weak evidence of the Younger Dryas cool event, but there is a clear climatic optimum between 8 and 6.4 ka with temperatures 1°-2°C higher than the present day. The marine changes compare well with vegetational changes on both South and North Island.
Resumo:
We provide a new multivariate calibration-function based on South Atlantic modern assemblages of planktonic foraminifera and atlas water column parameters from the Antarctic Circumpolar Current to the Subtropical Gyre and tropical warm waters (i.e., 60°S to 0°S). Therefore, we used a dataset with the abundance pattern of 35 taxonomic groups of planktonic foraminifera in 141 surface sediment samples. Five factors were taken into consideration for the analysis, which account for 93% of the total variance of the original data representing the regional main oceanographic fronts. The new calibration-function F141-35-5 enables the reconstruction of Late Quaternary summer and winter sea-surface temperatures with a statistical error of ~0.5°C. Our function was verified by its application to a sediment core extracted from the western South Atlantic. The downcore reconstruction shows negative anomalies in sea-surface temperatures during the early-mid Holocene and temperatures within the range of modern values during the late Holocene. This pattern is consistent with available reconstructions.