429 resultados para Rh(100) surface
Resumo:
The El Niño/ Southern Oscillation (ENSO) phenomenon is the strongest known natural interannual climate fluctuation. The most recent two extreme ENSO events of 1982/83 and 1997/98 severley hit the socio-economy of main parts of Indonesia. As the climate variability is not homogeneous over the whole Archipelago of Indonesia, ENSO events cause negative precipitation anomalies of diverse magnitude and uration in different regions. Understanding the hydrology of humid tropical catchments is an essential prerequisite to investigate the impact of climate variability on the catchment hydrology. Together with the quantitative assessment of future water resource changes they are essential tools to develop mitigation strategies on a catchment scale. These results can be integrated into long term Integrated Water Resource Management (IWRM) strategies. The general objective of this study is to investigate and quantify the impact of ENSO caused climate variability on the water balance and the implications for water resources of a mesoscale tropical catchment.
Resumo:
The sub-Antarctic zone (SAZ) lies between the subtropical convergence (STC) and the sub-Antarctic front (SAF), and is considered one of the strongest oceanic sinks of atmospheric CO2. The strong sink results from high winds and seasonally low sea surface fugacities of CO2 (fCO2), relative to atmospheric fCO2. The region of the SAZ, and immediately south, is also subject to mode and intermediate water formation, yielding a penetration of anthropogenic CO2 below the mixed layer. A detailed analysis of continuous measurements made during the same season and year, February - March 1993, shows a coherent pattern of fCO2 distributions at the eastern (WOCE/SR3 at about 145°E) and western edges (WOCE/I6 at 30°E) of the Indian sector of the Southern Ocean. A strong CO2 sink develops in the Austral summer (delta fCO2 < - 50 µatm) in both the eastern (110°-150°E) and western regions (20°-90°E). The strong CO2 sink in summer is due to the formation of a shallow seasonal mixed-layer (about 100 m). The CO2 drawdown in the surface water is consistent with biologically mediated drawdown of carbon over summer. In austral winter, surface fCO2 is close to equilibrium with the atmosphere (delta fCO2 ± 5 µatm), and the net CO2 exchange is small compared to summer. The near-equilibrium values in winter are associated with the formation of deep winter mixed-layers (up to 700 m). For years 1992-95, the annual CO2 uptake for the Indian Ocean sector of the sub Antarctic Zone (40°-50°S, 20°-150°E) is estimated to be about 0.4 GtC/yr. Extrapolating this estimate to the entire sub-Antarctic zone suggests the uptake in the circumpolar SAZ is approaching 1 GtC/yr.
Resumo:
In 1937 the "Meteor" performed the cruises of the first part of the "Deutsche Nordatlantische Expedition". This publication treats seven stations of three-day-anchoring occupied during that time, five of which are located on the shelf, one on the continental slope and one on a ridge between the Capverde islands. The Bohnecke current meter, an instrument developed for the expedition, is described briefly and it's accuracy studied by comparing the measurements of two instruments which operated simultaneously at the same depth. It is shown that it is very sensitive for movements of the anchored ship because of the very short measuring intervall (2 minutes). The influence of the ship's movements could not be eliminated completely, the mode of using the instrument at different depths being unsuitable for this. Considering the stratification the accuracy of it's representation by the mean temperature and salinity distributionis studied. It is shown that under certain conditions a distribution estimated from observed values gives more exact results. This especially applies to the TS-diagram. Station Meteor336, located on the shelf near Cape Juby, shows temperatures 4 °C less than the open ocean and so belongs to the area of upwelling. During the observation period, however, internal tides are prominent. The diurnal component is of considerable influence, the distinction from inertial oscillations (25.5 hours) not being possible, however. Station Meteor341, on the shelf off Spanish-Sahara, gives an excellent example of the movements in the centre of the area of upwelling. Changing it's direction by 45° at the beginning of the measurements, the wind causes a change of current direction at all depths which, after some inertial oscillations (period 28.3 hours), settles down to a final value. At the beginning and the end of the observations the current at the upper depths is directed off-shore, the angle between current and wind being 22°, while at the lower depths it is orientated towards the shore. The depth of the upper homogenous layer gives the origin of the water transported upwards When during the inertial oscillations the current goes offshore at all depths temporarily, a sudden disturbance occurs in the temperature measurements. Station Meteor311 is located similar to station Meteor341 but was occupied one month earlier. At that time the wind situation was unnormal, the usual wind direction of 45° occuring at the end of the station. Therefore an unnormally high vertical shear of current speed and direction has been observed, the current vector being directed off-shore at the surface and near the bottom, towards the coast inbetween. The TS-diagram shows that the bottom water is replaced first so that upwelling does not occur during observation time. The state reached at the end of the station does not seem to be stable. Station Meteor369, on the continental slope, is governed by internal waves. Besides the internal tide of 12.4 hours a wave of 6.5 hour period is observed, being possibly amplified by the large bottom slope. In 40 - 60 m depth, where the thermocline is located, a wave with 3.3 hour period is observed which is argued to be an internal boundary wave. Station Meteor334 is located on the shelf NW of the mouth of the Senegal river. A marked temperature stratification, associated with large disturbances, and nearly constant salinity have been found there. The current was going slowly towards S or SW in the upper 20 - 30 m, towards N underneath. At the boundary of the current systems intense turbulence developed,including as it seems a water type of less salinity which is transported from the Senegal river by the lower current. Station Meteor327, located at 100 m depth between two of the Capverde islands, shows oceanic characteristics. The semidiurnal tide is found mainly, the diurnal component having considerable influence. Furtheron an internal wave of 6 hour period is seen the maximum amplitude of which is moving slowly downwards. Two possibilities of explaining it are discussed. Station Meteor366 is found in the area of ceasing winds off the coast of upper Guinea. The temperature there depends strongly on the depth, the salinity being nearly constant. The currents are divided into an upper and a lower system with large variations in both of them. A change of wind direction of nearly 90° is supposed to be the reason. The variations in salinity accordingly are interpreted as the influence of fresh water outflow from land which is felt in a different way at different wind directions. In the last section the daily changes in air and water temperature are studied. The upwelling having large influence on these, a centre of the area of upwelling can be located at about 100 miles north of Cape Blanc (Station Meteor311). The semidiurnal tidal component is compared with previous results for the Atlantic Ocean yielding considerable differences for the direction and time of occurence of the current maximum which might be due to the topographical influences around the shelf.
Resumo:
Abundance of microzooplankton was studied from August to October 1970 in a ship laboratory using the method of concentration of water samples by filtration and then counting living organisms under a microscope. The main groups (in order of decreasing abundance) were as follows: infusorians, nauplii, copepodids, radiolarians, appendicularians, and some others (rotifers, worm and mollusk larvae). Concentration of infusorians rarely exceeded 100 #/l, possibly an underestimate. Nauplii often numbered 20 to 30 #/l. Study of vertical distribution of microzooplankton showed that peak concentrations in the Mediterranean Sea were at depth of 20-30 m regardless of day time. There were 2 peaks in the Atlantic Ocean, one in the 10- to 20-m layer, the other in the 50- to 75-m layer.
Resumo:
This paper presents a new fossil pollen record from Tso Moriri (32°54'N, 78°19'E, 4512 m a.s.l.) and seeks to reconstruct changes in mean annual precipitation (MAP) during the last 12,000 years. This high-alpine lake occupies an area of 140 km**2 in a glacial-tectonic valley in the northwestern Himalaya. The region has a cold climate, with a MAP <300 mm, and open vegetation. The hydrology is controlled by the Indian Summer Monsoon (ISM), but winter westerly-associated precipitation also affects the regional water balance. Results indicate that precipitation levels varied significantly during the Holocene. After a rapid increase in MAP, a phase of maximum humidity was reached between ca. 11 to 9.6 cal ka BP, followed by a gradual decline in MAP. This trend parallels the reduction in the Northern Hemisphere summer insolation. Comparison of different palaeoclimate proxy records reveal evidence for a stronger Holocene decrease in precipitation in the northern versus the southern parts of the ISM domain. The long-term trend of ISM weakening is overlaid with several short periods of greater dryness, which are broadly synchronous with the North Atlantic cold spells, suggesting reduced amounts of westerly-associated winter precipitation. Compared to the mid and late Holocene, it appears that westerlies had a greater influence on the western parts of the ISM domain during the early Holocene. During this period, the westerly-associated summer precipitation belt was positioned at Mediterranean latitudes and amplified the ISM-derived precipitation. The Tso Moriri pollen record and moisture reconstructions also suggest that changes in climatic conditions affected the ancient Harappan Civilisation, which flourished in the greater Indus Valley from approximately 5.2 to 3 cal ka BP. The prolonged Holocene trend towards aridity, punctuated by an interval of increased dryness (between ca. 4.5 to 4.3 cal ka BP), may have pushed the Mature Harappan urban settlements (between ca. 4.5 to 3.9 cal ka BP) to develop more efficient agricultural practices to deal with the increasingly acute water shortages. The amplified aridity associated with North Atlantic cooling between ca. 4 to 3.6 and around 3.2 cal ka BP further hindered local agriculture, possibly causing the deurbanisation that occurred from ca. 3.9 cal ka BP and eventual collapse of the Harappan Civilisation between ca. 3.5 to 3 cal ka BP.