141 resultados para North Coast of Peru
Resumo:
A quantitative model of development of magmatic and ore-magmatic systems under crests of mid-ocean ridges is constructed. Correct physical models of melting zone formation in approximation to active spreading, non-stationary dynamics of magma intrusion from a center of generation, filling of magma chambers of various shapes, feeding of fissure-type volcanoes, and retrograde boiling of melts during solidification of intrusive bodies beneath axial zones of spreading in crests of ridges are proposed. Physicochemical and mathematical theories of disintegration of multi-component solutions, growth of liquational drops of ore melts, and sublimation of components from magmatic gases are elaborated. Methods for constructing physically correct models of heat and mass transfer in heterophase media are devised. Modeling of development of magmatic and ore-magmatic systems on the basis of the Usov-Kuznetsov facies method and the Pospelov system approach are advanced. For quantitative models numerical circuits are developed and numerical experiments are carried out.
Resumo:
Thirty-five box cores were collected from the continental shelf in the Ross Sea during cruises in January and February, 1983. Pb-210 and Pu-239, 240 geochronologies coupled with biogenic-silica measurements were used to calculate accumulation rates of biogenic silica. Sediment in the southern Ross Sea accumulates at rates ranging from <=0.6 to 2.7 mm/y, with the highest values occurring in the southwestern Ross Sea. Biogenic-silica content in surface sediments ranges from 2% (by weight) in Sulzberger Bay and the eastern Ross Sea to 41% in the southwestern Ross Sea. Biogenic-silica accumulation in the southwestern Ross Sea averages 2.7 * 10**-2 g/cm**2/y and is comparable to accumulation rates in high-productivity, upwelling environments from low-latitude continental margins (e.g., Gulf of California, coast of Peru). The total rate of biogenic-silica accumulation in the southern Ross Sea is approximately 0.2 * 10**14 g/y, with most of the accumulation occurring in basins (500-1000 m water depth). If biogenic-silica accumulation in the southern Ross Sea continental shelf is typical of other basins on the Antarctic continental shelf, as much as 1.2 * 10**14 g/y of silica could be accumulating in these deposits. Biogenic-silica accumulation on the Antarctic continental shelf may account for as much as a fourth of the dissolved silica supplied to the world ocean by rivers and hydrothermal vents.
Resumo:
Different parameterizations of subgrid-scale fluxes are utilized in a nonhydrostatic and anelastic mesoscale model to study their influence on simulated Arctic cold air outbreaks. A local closure, a profile closure and two nonlocal closure schemes are applied, including an improved scheme, which is based on other nonlocal closures. It accounts for continuous subgrid-scale fluxes at the top of the surface layer and a continuous Prandtl number with respect to stratification. In the limit of neutral stratification the improved scheme gives eddy diffusivities similar to other parameterizations, whereas for strong unstable stratifications they become much larger and thus turbulent transports are more efficient. It is shown by comparison of model results with observations that the application of simple nonlocal closure schemes results in a more realistic simulation of a convective boundary layer than that of a local or a profile closure scheme. Improvements are due to the nonlocal formulation of the eddy diffusivities and to the inclusion of heat transport, which is independent of local gradients (countergradient transport).
Resumo:
Here we present a high-resolution marine sediment record from the El Niño region off the coast of Peru spanning the last 20,000 years. Sea surface temperature, photosynthetic pigments, and a lithic proxy for El Niño flood events on the continent are used as paleo-El Niño-Southern Oscillation proxy data. The onset of stronger El Niño activity in Peru started around 17,000 calibrated years before the present, which is later than modeling experiments show but contemporaneous with the Heinrich event 1. Maximum El Niño activity occurred during the early and late Holocene, especially during the second and third millennium B.P. The recurrence period of very strong El Niño events is 60-80 years. El Niño events were weak before and during the beginning of the Younger Dryas, during the middle of the Holocene, and during medieval times. The strength of El Niño flood events during the last millennium has positive and negative relationships to global and Northern Hemisphere temperature reconstructions.
Resumo:
Climatic changes are most pronounced in northern high latitude regions. Yet, there is a paucity of observational data, both spatially and temporally, such that regional-scale dynamics are not fully captured, limiting our ability to make reliable projections. In this study, a group of dynamical downscaling products were created for the period 1950 to 2100 to better understand climate change and its impacts on hydrology, permafrost, and ecosystems at a resolution suitable for northern Alaska. An ERA-interim reanalysis dataset and the Community Earth System Model (CESM) served as the forcing mechanisms in this dynamical downscaling framework, and the Weather Research & Forecast (WRF) model, embedded with an optimization for the Arctic (Polar WRF), served as the Regional Climate Model (RCM). This downscaled output consists of multiple climatic variables (precipitation, temperature, wind speed, dew point temperature, and surface air pressure) for a 10 km grid spacing at three-hour intervals. The modeling products were evaluated and calibrated using a bias-correction approach. The ERA-interim forced WRF (ERA-WRF) produced reasonable climatic variables as a result, yielding a more closely correlated temperature field than precipitation field when long-term monthly climatology was compared with its forcing and observational data. A linear scaling method then further corrected the bias, based on ERA-interim monthly climatology, and bias-corrected ERA-WRF fields were applied as a reference for calibration of both the historical and the projected CESM forced WRF (CESM-WRF) products. Biases, such as, a cold temperature bias during summer and a warm temperature bias during winter as well as a wet bias for annual precipitation that CESM holds over northern Alaska persisted in CESM-WRF runs. The linear scaling of CESM-WRF eventually produced high-resolution downscaling products for the Alaskan North Slope for hydrological and ecological research, together with the calibrated ERA-WRF run, and its capability extends far beyond that. Other climatic research has been proposed, including exploration of historical and projected climatic extreme events and their possible connections to low-frequency sea-atmospheric oscillations, as well as near-surface permafrost degradation and ice regime shifts of lakes. These dynamically downscaled, bias corrected climatic datasets provide improved spatial and temporal resolution data necessary for ongoing modeling efforts in northern Alaska focused on reconstructing and projecting hydrologic changes, ecosystem processes and responses, and permafrost thermal regimes. The dynamical downscaling methods presented in this study can also be used to create more suitable model input datasets for other sub-regions of the Arctic.
Resumo:
A high-resolution study of benthic foraminiferal assemblages was performed on a ca. eight metre long sediment core from Gullmar Fjord on the west coast of Sweden. The results of 210Pb- and AMS 14C-datings show that the record includes the two warmest climatic episodes of the last 1500 years: the Medieval Warm Period (MWP) and the recent warming of the 20th century. Both periods are known to be anomalously warm and associated with positive NAO winter indices. Benthic foraminiferal successions of both periods are compared in order to find faunal similarities and common denominators corresponding to past climate changes. During the MWP, Adercotryma glomerata, Cassidulina laevigata and Nonionella iridea dominated the assemblages. Judging from dominance of species sensitive to hypoxia and the highest faunal diversity for the last ca. 2400 years, the foraminiferal record of the MWP suggests an absence of severe low oxygen events. At the same time, faunas and d13C values both point to high primary productivity and/or increased input of terrestrial organic carbon into the fjord system during the Medieval Warm Period. Comparison of the MWP and recent warming revealed different trends in the faunal record. The thin-shelled foraminifer N. iridea was characteristic of the MWP, but became absent during the second half of the 20th century. The recent Skagerrak-Kattegat fauna was rare or absent during the MWP but established in Gullmar Fjord at the end of the Little Ice Age or in the early 1900s. Also, there are striking differences in the faunal diversity and absolute abundances of foraminifera between both periods. Changes in primary productivity, higher precipitation resulting in intensified land runoff, different oxygen regimes or even changes in the fjord's trophic status are discussed as possible causes of these faunal differences.
Resumo:
This synthesis dataset contains records of freshwater peat and lake sediments from continental shelves and coastal areas. Information included is site location (when available), thickness and description of terrestrial sediments as well as underlying and overlying sediments, dates (when available), and references.
Resumo:
The Late Weichselian-Early Holocene variability of the North Atlantic Current has been studied with focus on the zonal component of this meridional transport during the transition from glacial to interglacial conditions. The investigated sediment core is from 409 m water depth in the SW Barents Sea. Eight Accelerator mass spectrometry (AMS) 14C dates show that the core covers the last 20,000 cal yr B.P. with a centennial scale resolution during Late Weichselian-Early Holocene. Planktic foraminiferal assemblages were analyzed using the >100 ?m size fraction and foraminiferal planktic and benthic d13C and d18O isotopes were measured. Furthermore, a range of physical and chemical analyses has been carried out on the bulk sediment samples. Four time periods have been identified which represent the varying oceanographic conditions in Ingøydjupet, a glacial trough located off the north coast of Norway in the SW Barents Sea. 1) The late glacial (before ca 15,000 cal yr B.P.) influenced by the nearby ice sheets with high amounts of sea ice- or iceberg-transported detritus. 2) The late Oldest Dryas stadial and the Bølling-Allerød interstadial (ca 15,000-12,700 cal yr B.P.) with cold surface water conditions influenced by the collapse of the nearby ice sheets, high amounts of sea ice- or iceberg-transported detritus and melt water and weak subsurface inflow of Atlantic Water. 3) The Younger Dryas cold stadial (12,700-11,650 cal yr B.P.) with low primary productivity and extensive sea ice cover and 4) The Preboreal and Early Holocene (11,650-6800 cal yr B.P. cal yr B.P.) with strong influx of Atlantic Water into the area, near absence of ice rafted debris and generally ameliorated conditions in both surface and bottom water masses as seen from a high flux of foraminifera and increased marine primary production.