111 resultados para Branched glycerol dialkyl glycerol tetraether
Resumo:
Among the most extreme habitats on Earth, dark, deep, anoxic brines host unique microbial ecosystems that remain largely unexplored. As the terminal step of anaerobic degradation of organic matter, methanogenesis is a potentially significant but poorly constrained process in deep-sea hypersaline environments. We combined biogeochemical and phylogenetic analyses as well as incubation experiments to unravel the origin of methane in hypersaline sediments of Orca Basin in the northern Gulf of Mexico. Substantial concentrations of methane (up to 3.4 mM) coexisted with high concentrations of sulfate (16-43 mM) in two sediment cores retrieved from the northern and southern parts of Orca Basin. The strong depletion of 13C in methane (-77 to -89 per mill) pointed towards a biological source. While low concentrations of competitive substrates limited the significance of hydrogenotrophic and acetoclastic methanogenesis, the presence of non-competitive methylated substrates (methanol, trimethylamine, dimethyl sulfide, dimethylsulfoniopropionate) supported the potential for methane generation through methylotrophic methanogenesis. Thermodynamic calculations demonstrated that hydrogenotrophic and acetoclastic methanogenesis were unlikely to occur under in situ conditions, while methylotrophic methanogenesis from a variety of substrates was highly favorable. Likewise, carbon isotope relationships between methylated substrates and methane supported methylotrophic methanogenesis as the major source of methane. Stable isotope tracer and radiotracer experiments with 13C bicarbonate, acetate and methanol as well as 14C-labeled methylamine indicated that methylotrophic methanogenesis was the predominant methanogenic pathway. Based on 16S rRNA gene sequences, halophilic methylotrophic methanogens related to the genus Methanohalophilus dominated the benthic archaeal community in the northern basin but also occurred in the southern basin. High abundances of methanogen lipid biomarkers such as intact polar and polyunsaturated hydroxyarchaeols were detected in sediments from the northern basin, with lower abundances in the southern basin. Strong 13C-depletion of saturated and monounsaturated hydroxyarchaeol were consistent with methylotrophic methanogenesis as the major methanogenic pathway. Collectively, the availability of methylated substrates, thermodynamic calculations, experimentally determined methanogenic activity as well as lipid and gene biomarkers strongly suggested methylotrophic methanogenesis as predominant pathway of methane formation in the presence of sulfate in Orca Basin sediments.
Resumo:
The occurrence of microbialites in post-glacial coral reefs has been interpreted to reflect an ecosystem response to environmental change. The greater thickness of microbialites in reefs with a volcanic hinterland compared to thinner microbial crusts in reefs with a non-volcanic hinterland led to the suggestion that fertilization of the reefal environment by chemical weathering of volcanic rocks stimulated primary productivity and microbialite formation. Using a molecular and isotopic approach on reef-microbialites from Tahiti (Pacific Ocean), it was recently shown that sulfate-reducing bacteria favored the formation of microbial carbonates. To test if similar mechanisms induced microbialite formation in other reefs as well, the Tahitian microbialites are compared with similar microbialites from coral reefs off Vanuatu (Pacific Ocean), Belize (Caribbean Sea, Atlantic Ocean), and the Maldives (Indian Ocean) in this study. The selected study sites cover a wide range of geological settings, reflecting variable input and composition of detritus. The new lipid biomarker data and stable sulfur isotope results confirm that sulfate-reducing bacteria played an intrinsic role in the precipitation of microbial carbonate at all study sites, irrespective of the geological setting. Abundant biomarkers indicative of sulfate reducers include a variety of terminally-branched and mid chain-branched fatty acids as well as mono-O-alkyl glycerol ethers. Isotope evidence for bacterial sulfate reduction is represented by low d34S values of pyrite (-43 to -42 per mill) enclosed in the microbialites and, compared to seawater sulfate, slightly elevated d34S and d18O values of carbonate-associated sulfate (21.9 to 22.2 per mill and 11.3 to 12.4 per mill, respectively). Microbialite formation took place in anoxic micro-environments, which presumably developed through the fertilization of the reef environment and the resultant accumulation of organic matter including bacterial extracellular polymeric substances (EPS), coral mucus, and marine snow in cavities within the coral framework. ToF-SIMS analysis reveals that the dark layers of laminated microbialites are enriched in carbohydrates, which are common constituents of EPS and coral mucus. These results support the hypothesis that bacterial degradation of EPS and coral mucus within microbial mats favored carbonate precipitation. Because reefal microbialites formed by similar processes in very different geological settings, this comparative study suggests that a volcanic hinterland is not required for microbialite growth. Yet, detrital input derived from the weathering of volcanic rocks appears to be a natural fertilizer, being conductive for the growth of microbial mats, which fosters the development of particularly abundant and thick microbial crusts.
Resumo:
The distribution of acyclic and cyclic biphytanediols, the putative breakdown products of glycerol dialkyl glycerol tetraethers (GDGTs), was investigated for recent marine sediments from Nankai Trough, offshore Kii Peninsula. The most abundant diol is tricyclic biphytanediol, whose relative abundance is in the range 32-46%. Its carbon skeleton, with two cyclopentane rings and one cyclohexane ring, is the same as would be expected via a crenarchaeol origin. Based on the structure of crenarchaeol, the tricyclic biphytanediol is considered to be derived not only from crenarchaeol but also from other unknown sources. The ring distributions of the biphytanediols are different from those of the biphytanes obtained from intact polar lipids by way of chemical treatment, suggesting that biphytanediols are not solely the diagenetic products of in situ GDGTs.
Resumo:
Glycolipids are prominent constituents in the membranes of cells from all domains of life. For example, diglycosyl-glycerol dibiphytanyl glycerol tetraethers (2Gly-GDGTs) are associated with methanotrophic ANME-1 archaea and heterotrophic benthic archaea, two archaeal groups of global biogeochemical importance. The hydrophobic biphytane moieties of 2Gly-GDGTs from these two uncultivated archaeal groups exhibit distinct carbon isotopic compositions. To explore whether the isotopic compositions of the sugar headgroups provide additional information on the metabolism of their producers, we developed a procedure to analyze the d13C values of glycosidic headgroups. Successful determination was achieved by (1) monitoring the contamination from free sugars during lipid extraction and preparation, (2) optimizing the hydrolytic conditions for glycolipids, and (3) derivatizing the resulting sugars into aldononitrile acetate derivatives, which are stable enough to withstand a subsequent column purification step. First results of d13C values of sugars cleaved from 2Gly-GDGTs in two marine sediment samples, one containing predominantly ANME-1 archaea and the other benthic archaea, were obtained and compared with the d13C values of the corresponding biphytanes. In both samples the dominant sugar headgroups were enriched in 13C relative to the corresponding major biphytane. This 13C enrichment was significantly larger in the putative major glycolipids from ANME-1 archaea (~15 per mil) than in those from benthic archaea (<7 per mil). This method opens a new analytical window for the examination of carbon isotopic relationships between sugars and lipids in uncultivated organisms.