144 resultados para Balneario de Luyando (Álava).


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fate of subducted sediment and the extent to which it is dehydrated and/or melted before incorporation into arc lavas has profound implications for the thermo-mechanical nature of the mantle wedge and models for crustal evolution. In order to address these issues, we have undertaken the first measurements of 10Be and light elements in lavas from the Tonga-Kermadec arc and the sediment profile at DSDP site 204 outboard of the trench. The 10Be/9Be ratios in the Tonga lavas are lower than predicted from flux models but can be explained if (a) previously estimated sediment contributions are too high by a factor of 2-10, (b) the top 1-22 m of the incoming sediment is accreted, (c) large amounts of sediment erosion are proposed, or (d) the sediment component takes several Myr longer than the subducting plate to reach the magma source region beneath Tonga. The lavas form negative Th/Be-Li/Be arrays that extend from a depleted mantle source composition to lower Th/Be and Li/Be ratios than that of the bulk sediment. Thus, these arrays are not easily explained by bulk sediment addition and, using partition coefficients derived from experiments on the in-coming sediment, we show that they are also unlikely to result from fluid released during dehydration of the sediment (or altered oceanic crust). However, partial melts of the dehydrated sediment residue formed at ~800 °C during the breakdown of amphibole +/- plagioclase and in the absence of cordierite have significantly lowered Th/Be ratios. The lava arrays can be successfully modelled as 10-15% partial melts of depleted mantle after it has been enriched by the addition of 0.2-2% of these partial melts. Phase relations suggest that this requires that the top of the subducting crust reaches temperatures of ~800 °C by the time it attains ~ 80 km depth which is in excellent agreement with the results of recent numerical models incorporating a temperature-dependent mantle viscosity. Under these conditions the wet basalt solidus is also crossed yet there is no recognisable eclogitic signal in the lavas suggesting that on-going dehydration or strong thermal gradients in the upper part of the subducting plate inhibit partialmelting of the altered oceanic crust.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Following the discovery of asphalt volcanism in the Campeche Knolls a research cruise was carried out in 2006 to unravel the nature of the asphalt deposits at Chapopote. The novel results support the concept that the asphalt deposits at the seafloor in 3000 m of water depth originate from the seepage of heavy petroleum with a density slightly greater than water. The released petroleum forms characteristic flow structures at the seafloor with surfaces that are 'ropy' or 'rough' similar to magmatic lava flows. The surface structures indicate that the viscosity of the heavy petroleum rapidly increases after extrusion due to loss of volatiles. Consequently, the heavy petroleum forms the observed asphalt deposit and solidifies. Detailed survey with a remotely operated vehicle revealed that the asphalts are subject to sequential alterations: e.g. volume reduction leading to the formation of visible cracks in the asphalt surface, followed by fragmentation of the entire deposit. While relatively fresh asphalt samples were gooey and sticky, older, fragmented pieces were found to be brittle without residual stickiness. Furthermore, there is evidence for petroleum seepage from below the asphalt deposits, leading to local up-doming and, sometimes, to whip-shaped extrusions. Extensive mapping by TV-guided tools of Chapopote Asphalt Volcano indicates that the main asphalt deposits occur at the south-western rim that borders a central, crater-like depression. The most recent asphalt deposit at Chapopote is the main asphalt field covering an area of ~2000 m**2. Asphalt volcanism is distinct from oil and gas seepage previously described in the Gulf of Mexico and elsewhere because it is characterized by episodic intrusions of semi-solid hydrocarbons that spread laterally over a substantial area and produce structures with significant vertical relief. As Chapopote occurs at the crest of a salt structure it is inferred that asphalt volcanism is a secondary result of salt tectonism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New petrographic and compositional data were reported for 143 samples of core recovered from Sites 832 and 833 during Ocean Drilling Program (ODP) Leg 134. Site 832 is located in the center and Site 833 is on the eastern edge of the North Aoba Basin, in the central part of the New Hebrides Island Arc. This basin is bounded on the east (Espiritu Santo and Malakula islands) and west (Pentecost and Maewo islands) by uplifted volcano-sedimentary ridges associated with collision of the d'Entrecasteaux Zone west of the arc. The currently active Central Belt volcanic front extends through the center of this basin and includes the shield volcanoes of Aoba, Ambrym, and Santa Maria islands. The oldest rocks recovered by drilling are the lithostratigraphic Unit VII Middle Miocene volcanic breccias in Hole 832B. Lava clasts are basaltic to andesitic, and the dominant phenocryst assemblage is plagioclase + augite + orthopyroxene + olivine. These clasts characteristically contain orthopyroxene, and show a low to medium K calc-alkaline differentiation trend. They are tentatively correlated with poorly documented Miocene calc-alkaline lavas and intrusives on adjacent Espiritu Santo Island, although this correlation demands that the measured K-Ar of 5.66 Ma for one clast is too young, due to alteration and Ar loss. Lava clasts in the Hole 832B Pliocene-Pleistocene sequence are mainly ankaramite or augite-rich basalt and basaltic andesite; two of the most evolved andesites have hornblende phenocrysts. These lavas vary from medium- to high-K compositions and are derived from a spectrum of parental magmas for which their LILE and HFSE contents show a broad inverse correlation with SiO2 contents. We hypothesize that this spectrum results from partial melting of an essentially similar mantle source, with the low-SiO2 high HFSE melts derived by lower degrees of partial melting probably at higher pressures than the high SiO2, low HFSE magmas. This same spectrum of compositions occurs on the adjacent Central Chain volcanoes of Aoba and Santa Maria, although the relatively high-HFSE series is known only from Aoba. Late Pliocene to Pleistocene lava breccias in Hole 833B contain volcanic clasts including ankaramite and augite + olivine + plagioclase-phyric basalt and rare hornblende andesite. These clasts are low-K compositions with flat REE patterns and have geochemical affinities quite different from those recovered from the central part of the basin (Hole 832B). Compositionally very similar lavas occur on Merelava volcano, 80 km north of Site 833, which sits on the edge of the juvenile Northern (Jean Charcot) Trough backarc basin that has been rifting the northern part of the New Hebrides Island Arc since 2-3 Ma. The basal sedimentary rocks in Hole 833B are intruded by a series of Middle Pliocene plagioclase + augite +/- olivine-phyric sills with characteristically high-K evolved basalt to andesite compositions, transitional to shoshonite. These are compositionally correlated with, though ~3 m.y. older than, the high-HFSE series described from Aoba. The calc-alkaline clasts in Unit VII of Hole 832B, correlated with similar lavas of Espiritu Santo Island further west, presumably were erupted before subduction polarity reversal perhaps 6-10 Ma. All other samples are younger than subduction reversal and were generated above the currently subduction slab. The preponderance in the North Aoba Basin and adjacent Central Chain islands of relatively high-K basaltic samples, some with transitional alkaline compositions, may reflect a response to collision of the d'Entrecasteaux Zone with the arc some 2-4 Ma. This may have modified the thermal structure of the subduction zone, driving magma generation processes to deeper levels than are present normally along the reminder of the New Hebrides Island Arc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conventional K-Ar and 40Ar/39Ar analyses on whole-rock samples are reported for basaltic samples retrieved on the Central and Southern Kerguelen plateaus during Ocean Drilling Program Leg 120. Sites 747, 749, and 750 recovered basalts from the plateau basement, whereas Site 748 drilled a lava flow interbedded with sediments of probable Albian age. The freshest core basalts from the basement yielded dates falling in the 110-100 m.y. interval. Sample 120-749C-15R-3 (26-31 cm) gave conventional K-Ar, total fusion, and plateau 40Ar/39Ar ages that are closely concordant: 111.5 ± 3.2 m.y., 109.9 ± 1.2 m.y., and 109.6 ± 0.7 m.y., respectively. Sample 120-750B-15R-5 (54-60 cm), when taking into account the analytical uncertainties, yields conventional K-Ar and 40Ar/39Ar plateau ages that can be considered similar: 101.2 ± 7.5 and 118.2 ± 5 m.y., respectively. Inspection of the 39Ar/40Ar vs. 36Ar/40Ar diagram does not reveal the occurrence of an initial argon component of radiogenic composition in the two samples. Accordingly, our results suggest that the formation of the basement of the Central Kerguelen Plateau was closed at 110 m.y.. Furthermore, these results are in agreement with a K-Ar age of 114 ± 1 m.y. mentioned in the literature for a basalt dredged in the 77°E Graben. The still scant amount of data indicates that the outpourings of the Central Kerguelen Plateau correspond rather well with widespread continental magmatism in Gondwanaland that is believed to mark the incipient opening of the eastern Indian Ocean. This implies a huge head for the mantle plume at the source of these liquids. Nevertheless, on land and at sea the exact duration of magmatism remains unknown. Therefore, a catastrophic pattern similar to that currently invoked for the Deccan Traps at the end of the Cretaceous, though possible, is not yet required by present geochronologic data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In contrast to the adjacent parts of the Transantarctic Mountains, the Mesozoic macrofossil record of north Victoria Land remains poorly documented. During the Ninth German Antarctic North Victoria Land Expedition (GANOVEX IX 2005/2006) twelve fossil sites in southern north Victoria Land were discovered and sampled. Fossils from the Triassic to Early Jurassic Section Peak Formation were collected from Archambault Ridge, Anderton Glacier, Skinner Ridge, Timber Peak, Vulcan Hills, Runaway Hills, Section Peak and Shafer Peak. These localities have yielded abundant fossil wood and compressions of horsetails, ferns, and seed ferns. In addition, several beetle elytra were found at Timber Peak. Fossil localities of the overlying Shafer Peak Formation and Exposure Hill-type deposits occur at Shafer Peak and in the Mount Carson area, and have yielded various trace fossils, permineralized wood, leaf compressions, and conchostracans. Two newly discovered fossil sites are associated with the late Early Jurassic Kirkpatrick lava flows. Upright-standing tree trunks have been recorded at Suture Bench, and highly fossiliferous sedimentary interbeds occur at the southwestern end of the Mesa Range. Of special interest is the exquisite fossil preservation at some of the sites. Compression fossils from Timber Peak and Shafer Peak contain well-preserved cuticles, which is very rare in the Antarctic. An Early Jurassic permineralized deposit at Mount Carson contains structurally preserved ferns. Furthermore, the arthropod fossils from sedimentary interbeds at the Mesa Range are preserved in minute detail, including antennae and limb spines of a blattid insect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We provide the first exploration of thallium (Tl) abundances and stable isotope compositions as potential tracers during arc lava genesis. We present a case study of lavas from the Central Island Province (CIP) of the Mariana arc, supplemented by representative sedimentary and altered oceanic crust (AOC) inputs from ODP Leg 129 Hole 801 outboard of the Mariana trench. Given the large Tl concentration contrast between the mantle and subduction inputs coupled with previously published distinctive Tl isotope signatures of sediment and AOC, the Tl isotope system has great potential to distinguish different inputs to arc lavas. Furthermore, CIP lavas have well-established inter island variability, providing excellent context for the examination of Tl as a new stable isotope tracer. In contrast to previous work (Nielsen et al., 2006b), we do not observe Tl enrichment or light epsilon 205Tl (where epsilon 205Tl is the deviation in parts per 10,000 of a sample 205Tl/203Tl ratio compared to NIST SRM 997 Tl standard) in the Jurassic-aged altered mafic ocean crust subducting outboard of the Marianas (epsilon 205Tl = - 4.4 to 0). The lack of a distinctive epsilon 205Tl signature may be related to secular changes in ocean chemistry. Sediments representative of the major lithologies from ODP Hole Leg 129 801 have 1-2 orders of magnitude of Tl enrichment compared to the CIP lavas, but do not record heavy signatures (epsilon 205Tl = - 3.0 to + 0.4), as previously found in similar sediment types (epsilon 205Tl > + 2.5; Rehkämper et al., 2004). We find a restricted range of epsilon 205Tl = - 1.8 to - 0.4 in CIP lavas, which overlaps with MORB. One lava from Guguan falls outside this range with epsilon 205Tl = + 1.2. Coupled Cs, Tl and Pb systematics of Guguan lavas suggests that this heavy Tl isotope composition may be due to preferential degassing of isotopically light Tl. In general, the low Tl concentrations and limited isotopic range in the CIP lavas is likely due to the unexpectedly narrow range of epsilon 205Tl found in Mariana subduction inputs, coupled with volcaniclastic, rather than pelagic sediment as the dominant source of Tl. Much work remains to better understand the controls on Tl processing through a subduction zone. For example, Tl could be retained in residual phengite, offering the potential exploration of Cs/Tl ratios as a slab thermometer. However, data for Tl partitioning in phengite (and other micas) is required before developing this application further. Establishing a database of Tl concentrations and stable isotopes in subduction zone lavas with different thermal parameters and sedimentary inputs is required for the future use of Tl as a subduction zone tracer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Major and trace element compositions of basalts from the lower part of Hole 504B indicate their cogenetic nature. The cored sequence of interlayered pillow lavas and massive lava flows was produced by eruption of lavas, slightly variable in composition. Plagioclase and olivine crystallization in a shallow magma chamber, followed by small-scale fractionation at higher levels, is responsible for these variations. Except in highly fractured zones within the basement, there are systematic variations in the style and degree of rock alteration with depth. Trace element characteristics of altered rocks and secondary minerals indicate that progressive changes in sea water composition occurred as it reacted with basaltic crust.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drilling of the distal Newfoundland margin at Ocean Drilling Program Site 1277 recovered part of the transition between exhumed sub-continental mantle lithosphere and normal mid-ocean-ridge basalt (N-MORB) volcanism perhaps related to the initiation of seafloor spreading, which may have occurred near the Aptian/Albian boundary, coincident with the final separation of subcontinental mantle lithosphere. Subcontinental mantle lithosphere was recovered near the crest of a basement high, the Mauzy Ridge. This ridge lies near magnetic Anomaly M1 and is inferred to be of Barremian age. The recovered section is dominated by serpentinized spinel harzburgite, with subordinate dunite and minor gabbroic intrusives, and it includes inferred high-temperature ductile shear zones. The serpentinite is capped by foliated gabbro cataclasite that is interpreted as the product of a major seafloor extensional detachment. The serpentinized harzburgite beneath is highly depleted subcontinental mantle lithosphere that was exhumed to create new seafloor within the ocean-continent transition zone. After inferred removal of overlying brittle crust, the detachment was eroded, producing multiple mass flows that were dominated by clasts of serpentinite and gabbro in a lithoclastic and calcareous matrix. Basaltic lavas were erupted spasmodically, mainly as sheet flows, with subordinate lava breccia, hyaloclastite, and possible pillow lava. The sedimentary-volcanic succession and the exhumed mantle lithosphere experienced later high-angle extensional fracturing and probably faulting. Extensional fissures opened incrementally and were filled with silt-sized carbonate, basalt-derived clastic sediment, and hyaloclastite, forming neptunian dykes and geopetal structures. Chemical analysis of representative basalts for major elements and trace elements were made using a high-precision, high-accuracy X-ray fluorescence method (utilizing increased count times) and by whole-rock inductively coupled plasma-mass spectrometry that yielded additional evidence for rare earth elements. The analyses indicate N-MORB to slightly enriched compositions. The MORB was produced by relatively high degree melting of a fertile mantle source that differed strongly from the cored serpentinized peridotites. The basalts exhibit a distinct negative Nb anomaly on MORB-normalized plots that can be explained by prior extraction of melt from upper mantle that had previously been affected by subduction, possibly during closure of the Iapetus or Rheic oceans. In the proposed interpretation, mantle lithosphere was exhumed to the seafloor and experienced mass wasting to form serpentinite-rich mass flows. The interbedded MORB records the beginning of a transition to "normal" seafloor spreading. This interpretation takes into account drilling results from the Iberia-Galicia margin and the Jurassic Alps-Apennines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Legs 106-109 achieved the first basaltic bare-rock drill hole, on a small volcano (Serocki volcano) located on the flanks of the rift valley in the MAR about 70 km south of the Kane fracture zone. Because of severe technical difficulties only 50.5 m of basalt below seafloor was recovered. Geochemical analysis shows that the recovered basalts display typical N-MORB characteristics as expected in this segment of the Mid-Atlantic ridge. The lava flows display rather equivalent geochemical characteristics all over the drilled section and show the imprint of a previous magmatic differentiation suffered by the magmas before their emission, indicative of a fractional crystallization of plagioclase-bearing cumulates. The incompatible and alkali element content of these 648B magmas is very low, a feature which resembles those of other N-MORB. The geochemical characteristics of these basalts look closely similar to those of basalts from the same flow line emitted respectively 10 m.y. (Hole 395, Legs 45-46), and 110 m.y. (Hole 417A, Legs 51-53) ago, supporting the persistence in this ridge segment of a mantle source with depleted characteristics over the last 110 m.y., but with some variations in the degree of depletion of the source along this period. Although these rocks appear fresh, the imprint of an incipient low temperature alteration can be noticed in a few samples, as evidenced by slight increases of alkali, U elements, and 87Sr/86Sr isotopic compositions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A dynamic crystallization study was undertaken to provide a framework for linking the textural variations observed in the Hole 648B lavas with the size and morphology of cooling units inferred from drilling and submersible observation. The textures produced in cooling rate experiments carried out using a Serocki lava (ALV-1690-20) are comparable to the groundmass textural characteristics of lavas from Serocki volcano. The results of the dynamic crystallization study provide a quantitative link between texture, cooling rate, and eruption temperature. The maximum half-width of cooling units estimated from textural characteristics is on the order of 3 m, a value consistent with constraints from drilling and submersible observation. Textural characteristics indicate that the temperature from which cooling began was slightly above the liquidus. The relation between cooling rate and texture are also tested on a drill core sample of basalt of similar composition from a 9-m-thick flow in DSDP Hole 396B.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Proterozoic country rock at Ahlmannryggen consists of flat lying basaltic lo andesitic lava flows and sedimentary rocks intruded by dioritic sills (Borgmassivet Intrusives). The suites display a typical platform cover. K-Ar age determinations gave maximum ages of about 1200 Ma on the magmatic rocks. All these suites were intruded bv Proterozoic dikes dated also at about 1200 Ma. Localiy the Proterozoic rocks have a slaty cleavage grading into mylonitic texture which strike parallel to the Jutul Penck graben. Such tectonic structures were dated at 525 Ma using syntectonic white micas. Evidence of the break-up of Gondwana during the Early Jurassic/Triassic is given by dikes at Ahlmannryggen and lava flows, dikes and sills at Vestfjella. At Ahlmannryggen the initial rift phase is documented by the development of the Jutul Penck graben and the intrusion of the 200-250 Ma continental-tholeiitic dikes striking parallel to the graben axis. The lava flows, dikes and sills at Vestfjella represent a later stage of the Gondwana break-up at about 180 Ma that probably reflects the initial stage of the opening of the Weddell Sea.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hole 1256C was cored 88.5 m into basement, and Hole 1256D, the deep reentry hole, was cored 502 m into basement during Ocean Drilling Program Leg 206. Hole 1256D is located ~30 m south of Hole 1256C (Wilson, Teagle, Acton, et al., 2003, doi:10.2973/odp.proc.ir.206.2003). A thick massive flow drilled in both holes, Units 1256C-18 and 1256D-1, consists of a single cooling unit of cryptocrystalline to fine-grained basalt, interpreted as a ponded lava, 32 m and at least 74.2 m thick, respectively. This ponded flow gives us a unique opportunity to examine textural variations from the glassy, folded crust of the lava pond recovered from the top of Unit 1256C-18 through the coarse-grained, thick massive lava body to the unusually recrystallized and deformed base cored in Unit 1256C-18. Some detailed descriptions of the textures and grain size variations through the lava pond (Units 1256C-18 and 1256D-1), with special reference to the recrystallization of the base of Unit 1256C-18, are presented here.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this manuscript, we present the results of a physical properties investigation carried out on basaltic cores recovered from the four Leg 192 basement sites, focusing on the relationship between physical properties and alteration in basalts. Variations in physical properties in the Leg 192 basement sites closely resemble each other and reflect the amount of alteration and vein formation in the basement basalts. P-wave velocities, magnetic susceptibilities, and densities for the dense massive basalts are higher than those of more altered and heavily veined basalts. Porosity-dependent alteration is observed at Leg 192 basement sites: P-wave velocity displays a general decrease with increasing loss on ignition and potassium content. These trends are consistent with trends documented for typical alteration of oceanic crust and suggest that basalt alteration is largely responsible for the variation of the physical properties exhibited by rocks at Leg 192 basement sites. Our physical property data support the conclusion that only low-temperature seawater-mediated alteration occurred in the lava flows of the Ontong Java Plateau (OJP). This lack of higher-temperature hydrothermal alteration is consistent with the idea that the OJP basement sites are far from their eruptive vents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Data on internal structure, distribution, and chemical composition of iron-manganese nodules from the central part of the South Pacific are reported. Nodules with relatively high contents of Fe, Ti, Co, and Pb were found. Formation of these nodules in pelagic regions of the ocean with low sedimentation rates is tentatively ascribed by the authors to leaching of Fe, Mn, and some minor elements during submarine lava outflow and to geochemical mobility of these elements. The role of diagenetic re-distribution of ore elements during formation of nodules is also discussed.