121 resultados para Argentine wit and humor
Resumo:
Surface currents and sediment distribution of the SE South American upper continental margin are under influence of the South American Monsoon System (SAMS) and the Southern Westerly Wind Belt (SWWB). Both climatic systems determine the meridional position of the Subtropical Shelf Front (STSF) and probably also of the Brazil-Malvinas Confluence (BMC). We reconstruct the changing impact of the SAMS and the SWWB on sediment composition at the upper Rio Grande Cone off southern Brazil during the last 14 cal kyr combining sedimentological, geochemical, micropaleontological and rock magnetic proxies of marine sediment core GeoB 6211-2. Sharp reciprocal changes in ferri- and paramagnetic mineral content and prominent grain-size shifts give strong clues to systematic source changes and transport modes of these mostly terrigenous sediments. Our interpretations support the assumption that the SAMS over SE South America was weaker than today during most of the Late Glacial and entire Early Holocene, while the SWWB was contracted to more southern latitudes, resembling modern austral summer-like conditions. In consequence, the STSF and the BMC were driven to more southern positions than today's, favoring the deposition of Fe-rich but weakly magnetic La Plata River silts at the Rio Grande Cone. During the Mid Holocene, the northern boundary of the SWWB migrated northward, while the STSF reached its northernmost position of the last 14 cal kyr and the BMC most likely arrived at its modern position. This shift enabled the transport of Antarctic diatoms and more strongly magnetic Argentinean shelf sands to the Rio Grande Cone, while sediment contributions from the La Plata River became less important. During the Late Holocene, the modern El Niño Southern Oscillation set in and the SAMS and the austral tradewinds intensified, causing a southward shift of the STSF to its modern position. This reinforced a significant deposition of La Plata River silts at the Rio Grande Cone. These higher magnetic silts with intermediate Fe contents mirror the modern more humid terrestrial climatic conditions over SE South America.
Resumo:
During Termination 1, millennial-scale weakening events of the Atlantic meridional overturning circulation (AMOC) supposedly produced major changes in sea surface temperatures (SSTs) of the western South Atlantic, and in mean air temperatures (MATs) over southeastern South America. It has been suggested, for instance, that the Brazil Current (BC) would strengthen (weaken) and the North Brazil Current (NBC) would weaken (strengthen) during slowdown (speed-up) events of the AMOC. This anti-phase pattern was claimed to be a necessary response to the decreased North Atlantic heat piracy during periods of weak AMOC. However, the thermal evolution of the western South Atlantic and the adjacent continent is so far largely unknown. Here we address this issue, presenting high-temporal-resolution SST and MAT records from the BC and southeastern South America, respectively. We identify a warming in the western South Atlantic during Heinrich Stadial 1 (HS1), which is followed first by a drop and then by increasing temperatures during the Bølling-Allerød, in phase with an existing SST record from the NBC. Additionally, a similar SST evolution is shown by a southernmost eastern South Atlantic record, suggesting a South Atlantic-wide pattern in SST evolution during most of Termination 1. Over southeastern South America, our MAT record shows a two-step increase during Termination 1, synchronous with atmospheric CO2 rise (i.e., during the second half of HS1 and during the Younger Dryas), and lagging abrupt SST changes by several thousand years. This delay corroborates the notion that the long duration of HS1 was fundamental in driving the Earth out of the last glacial.
Resumo:
Over 300 surface sediment samples from the Central and South Atlantic Ocean and the Caribbean Sea were investigated for the preservation state of the aragonitic test of Limacina inflata. Results are displayed in spatial distribution maps and are plotted against cross-sections of vertical water mass configurations, illustrating the relationship between preservation state, saturation state of the overlying waters, and overall water mass distribution. The microscopic investigation of L. inflata (adults) yielded the Limacina dissolution index (LDX), and revealed three regional dissolution patterns. In the western Atlantic Ocean, sedimentary preservation states correspond to saturation states in the overlying waters. Poor preservation is found within intermediate water masses of southern origin (i.e. Antarctic intermediate water (AAIW), upper circumpolar water (UCDW)), which are distinctly aragonite-corrosive, whereas good preservation is observed within the surface waters above and within the upper North Atlantic deep water (UNADW) beneath the AAIW. In the eastern Atlantic Ocean, in particular along the African continental margin, the LDX fails in most cases (i.e. less than 10 tests of L. inflata per sample were found). This is most probably due to extensive "metabolic" aragonite dissolution at the sediment-water interface combined with a reduced abundance of L. inflata in the surface waters. In the Caribbean Sea, a more complex preservation pattern is observed because of the interaction between different water masses, which invade the Caribbean basins through several channels, and varying input of bank-derived fine aragonite and magnesian calcite material. The solubility of aragonite increases with increasing pressure, but aragonite dissolution in the sediments does not simply increase with water depth. Worse preservation is found in intermediate water depths following an S-shaped curve. As a result, two aragonite lysoclines are observed, one above the other. In four depth transects, we show that the western Atlantic and Caribbean LDX records resemble surficial calcium carbonate data and delta13C and carbonate ion concentration profiles in the water column. Moreover, preservation of L. inflata within AAIW and UCDW improves significantly to the north, whereas carbonate corrosiveness diminishes due to increased mixing of AAIW and UNADW. The close relationship between LDX values and aragonite contents in the sediments shows much promise for the quantification of the aragonite loss under the influence of different water masses. LDX failure and uncertainties may be attributed to (1) aragonite dissolution due to bottom water corrosiveness, (2) aragonite dissolution due to additional CO2 release into the bottom water by the degradation of organic matter based on an enhanced supply of organic matter into the sediment, (3) variations in the distribution of L. inflata and hence a lack of supply into the sediment, (4) dilution of the sediments and hence a lack of tests of L. inflata, or (5) redeposition of sediment particles.
Resumo:
The strength and geometry of the Atlantic meridional overturning circulation is tightly coupled to climate on glacial-interglacial and millennial timescales, but has proved difficult to reconstruct, particularly for the Last Glacial Maximum. Today, the return flow from the northern North Atlantic to lower latitudes associated with the Atlantic meridional overturning circulation reaches down to approximately 4,000 m. In contrast, during the Last Glacial Maximum this return flow is thought to have occurred primarily at shallower depths. Measurements of sedimentary 231Pa/230Th have been used to reconstruct the strength of circulation in the North Atlantic Ocean, but the effects of biogenic silica on 231Pa/230Th-based estimates remain controversial. Here we use measurements of 231Pa/230Th ratios and biogenic silica in Holocene-aged Atlantic sediments and simulations with a two-dimensional scavenging model to demonstrate that the geometry and strength of the Atlantic meridional overturning circulation are the primary controls of 231Pa/230Th ratios in modern Atlantic sediments. For the glacial maximum, a simulation of Atlantic overturning with a shallow, but vigorous circulation and bulk water transport at around 2,000 m depth best matched observed glacial Atlantic 231Pa/230Th values. We estimate that the transport of intermediate water during the Last Glacial Maximum was at least as strong as deep water transport today.
Resumo:
Based on the quantitative study of diatoms and radiolarians, summer sea-surface temperature (SSST) and sea ice distribution were estimated from 122 sediment core localities in the Atlantic, Indian and Pacific sectors of the Southern Ocean to reconstruct the last glacial environment at the EPILOG (19.5-16.0 ka or 23 000-19 000 cal yr. B.P.) time-slice. The statistical methods applied include the Imbrie and Kipp Method, the Modern Analog Technique and the General Additive Model. Summer SSTs reveal greater surface-water cooling than reconstructed by CLIMAP (Geol. Soc. Am. Map Chart. Ser. MC-36 (1981) 1), reaching a maximum (4-5 °C) in the present Subantarctic Zone of the Atlantic and Indian sector. The reconstruction of maximum winter sea ice (WSI) extent is in accordance with CLIMAP, showing an expansion of the WSI field by around 100% compared to the present. Although only limited information is available, the data clearly show that CLIMAP strongly overestimated the glacial summer sea ice extent. As a result of the northward expansion of Antarctic cold waters by 5-10° in latitude and a relatively small displacement of the Subtropical Front, thermal gradients were steepened during the last glacial in the northern zone of the Southern Ocean. Such reconstruction may, however, be inapposite for the Pacific sector. The few data available indicate reduced cooling in the southern Pacific and give suggestion for a non-uniform cooling of the glacial Southern Ocean.
Resumo:
For the investigation of organic carbon fluxes reaching the seafloor, oxygen microprofiles were measured at 145 sites in different sub-regions of the Southern Ocean. At eleven sites, an in situ oxygen microprofiler was deployed for the measurement of oxygen profiles and the calculation of organic carbon fluxes. At four sites, both in situ and ex situ data were determined for high latitudes. Based on this dataset as well as on previous published data, a relationship was established for the estimation of fluxes derived by ex situ measured O2 profiles. The fluxes of labile organic matter range from 0.5 to 37.1 mgC m**2/day. The high values determined by in situ measurements were observed in the Polar Front region (water depth of more than 4290 m) and are comparable to organic matter fluxes observed for high-productivity, upwelling areas like off West Africa. The oxygen penetration depth, which reflects the long-term organic matter flux to the sediment, was correlated with assemblages of key diatom species. In the Scotia Sea (~3000 m water depth), oxygen penetration depths of less than 15 cm were observed, indicating high benthic organic carbon fluxes. In contrast, the oxic zone extends down to several decimeters in abyssal sediments of the Weddell Sea and the southeastern South Atlantic. The regional pattern of organic carbon fluxes derived from micro-sensor data suggest that episodic and seasonal sedimentation pulses are important for the carbon supply to the seafloor of the deep Southern Ocean.
Resumo:
Seasonal changes in surface ocean temperature are increasingly recognized as an important parameter of the climate system. Here we assess the potential of analyzing single-specimen planktonic foraminifera as proxy for the seasonal temperature contrast (seasonality). Oxygen isotopes and Mg/Ca ratios were measured on single specimens of Globigerinoides ruber, extracted from surface sediment samples of the Mediterranean Sea and the adjacent Atlantic Ocean. Variability in d18O and Mg/Ca was then compared to established modern seasonal changes in temperature and salinity for both regions. The results show that (1) average d18O-derived temperatures correlate with modern annual average temperatures for most sites, (2) the range in d18O- and Mg/Ca-derived temperature estimates from single-specimen analysis resembles the range in seasonal temperature values at the sea surface (0-50 m) in the Mediterranean Sea and the Atlantic Ocean, and (3) there is no strong correlation between Mg/Ca- and d18O-derived temperatures from the same specimens in the current data set, indicating that other parameters (salinity, carbonate ion concentration, symbiont activity, ontogenesis, and natural variability) potentially affect these proxies.
Resumo:
Based on 66 surface sediment samples collected in the SW Atlantic Ocean between 27 and 50°S, this study presents an overview of the spatial distribution of biogenic opal and diatom concentrations, and diatom assemblages. Biogenic opal has highest values in the deepest, pelagic stations and decreases toward the slope. Diatoms closely follow the spatial trend of opal. Diatom assemblages reflect the present-day dominant hydrographical features. Antarctic diatoms are the main contributors to the preserved diatom community in core top sediments, with coastal planktonic and tropical/subtropical diatoms as secondary components. Dominance of Antarctic diatoms between 35 and 50°S in the pelagic realm mirrors the northward displacement of Antarctic-source water masses, characterized by high nutrient content and low salinity. Northward of ca. 35°S, the highest contribution of tropical/subtropical, pelagic diatoms, typical for nutrient-poor and high salinity waters, matches the main southward path of the Brazil Current. Mixing of Antarctic and tropical waters down up to 45°S is clearly illustrated by the diatom assemblage. Concentrations of biogenic opal and diatoms rather reflect the path of predominant water masses, but are less correlated with surface water productivity in the SW Atlantic.
Resumo:
We analysed the alkenone unsaturation ratio (UK'37) in 87 surface sediment samples from the western South Atlantic (5°N-50°S) in order to evaluate its applicability as a paleotemperature tool for this part of the ocean. The measured UK'37 ratios were converted into temperature using the global core-top calibration of Müller et al. (1998, doi:10.1016/S0016-7037(98)00097-0) and compared with annual mean atlas sea-surface temperatures (SSTs) of overlying surface waters. The results reveal a close correspondence (<1.5°C) between atlas and alkenone temperatures for the Western Tropical Atlantic and the Brazil Current region north of 32°S, but deviating low alkenone temperatures by -2° to -6°C are found in the regions of the Brazil-Malvinas Confluence (35-39°S) and the Malvinas Current (41-48°S). From the oceanographic evidence these low UK'37 values cannot be explained by preferential alkenone production below the mixed layer or during the cold season. Higher nutrient availability and algal growth rates are also unlikely causes. Instead, our results imply that lateral displacement of suspended particles and sediments, caused by strong surface and bottom currents, benthic storms, and downslope processes is responsible for the deviating UK'37 temperatures. In this way, particles and sediments carrying a cold water UK'37 signal of coastal or southern origin are transported northward and offshore into areas with warmer surface waters. In the northern Argentine Basin the depth between displaced and unaffected sediments appears to coincide with the boundary between the northward flowing Lower Circumpolar Deep Water (LCDW) and the southward flowing North Atlantic Deep Water (NADW) at about 4000 m.
Resumo:
We explored the potential to use the stable isotopic compositions of planktonic foraminifera as a proxy for the position of the Brazil-Malvinas Confluence (BMC) in the Argentine Basin. For this purpose, we measured the oxygen and carbon isotopic compositions of Globigerinoides ruber (pink and white varieties measured separately), Globigerinoides trilobus, Globigerina bulloides, Globorotalia inflata and Globorotalia truncatulinoides (left- and right-coiling forms measured separately) from a latitudinal transect of 56 surface sediment samples from the continental slope off Brazil, Uruguay and Argentina between 20 and 48°S. Lowest oxygen isotopes values were found in G. ruber (pink), followed by G. ruber (white) and G. trilobus reflecting the highly stratified near surface water conditions north of the BMC. Globigerina bulloides was present mainly south of the BMC and records subsurface conditions supporting earlier plankton tow studies. Globorotalia inflata and G. truncatulinoides (left and right) were both available over the whole transect and calcify in the depth level with the steepest temperature change across the BMC. Accordingly, the delta18O of these species depict a sharp gradient of 2? at the confluence with remarkably stable values north and south of the BMC. Our data show that the oxygen isotopic composition of G. inflata and G. truncatulinoides (left and right) are the most reliable indicators for the present position of the BMC and can therefore be used to define the past migration of the front if appropriate cores are available.