470 resultados para Argentine North-east


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The lipid and organic nitrogen isotopic (delta15N) compositions of two common deep-water corals (Lophelia pertusa and Madrepora oculata) collected from selected locations of the NE Atlantic are compared to the composition of suspended particulate organic matter, in order to determine their principle food source. Initial results suggest that they may feed primarily on zooplankton. This is based on the increased abundances of mono-unsaturated fatty acids and alcohols and the different ratios of the polyunsaturated fatty acids, 22:6/20:5 of the corals when compared to those of the suspended particulate organic matter. There is enrichment in L. pertusa of mono-unsaturated fatty acids and of delta15N relative to M. oculata. It is unclear whether this reflects different feeding strategies or assimilation/storage efficiencies of zooplankton tissue or different metabolism in the two coral species.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Seamounts are of great interest to science, industry and conservation because of their potential role as 'stirring rods' of the oceans, their enhanced productivity, their high local biodiversity, and the growing exploitation of their natural resources. This is accompanied by rising concern about the threats to seamount ecosystems, e.g. through over-fishing and the impact of trawling. OASIS described the functioning characteristics of seamount ecosystems. OASIS' integrated hydrographic, biogeochemical and biological information. Based on two case studies. The scientific results, condensed in conceptual and mass balanced ecosystem models, were applied to outline a model management plan as well as site-specific management plans for the seamounts investigated. OASIS addressed five main objectives: Objective 1: To identify and describe the physical forcing mechanisms effecting seamount systems Objective 2: To assess the origin, quality and dynamics of particulate organic material within the water column and surface sediment at seamounts. Objective 3: To describe aspects of the biodiversity and the ecology of seamount biota, to assess their dynamics and the maintenance of their production. Objective 4: Modelling the trophic ecology of seamount ecosystems. Objective 5: Application of scientific knowledge to practical conservation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ten sites were drilled in the eastern flank of the Juan de Fuca Ridge (North East Pacific) along a 100 km-long east-west transect during Leg ODP 168. This study focuses on the mineralogical and chemical study of sediments that overly basaltic basement through which seawater circulates. Silicate authigenesis was observed in the sediment layer just above basement at sites located more than 30 km from the ridge axis. This sediment alteration is particularly abundant at ODP Sites 1031 and 1029 where authigenic formation of Fe-Mg rich smectite and zeolite and the dissolution of biogenic calcite are observed. Comparison of the distribution of the alteration in the basal sediment collected along this transect suggests that diffusional transport of aqueous solutes from the basement into the overlying sediment cannot produce the mineralogical and chemical changes in the basal sediments at Sites 1031 located on a basement topographic high, and at Site 1029 located at about 50 km from the ridge axis on a buried basement area. Vertical advection of basement fluid though the sediment section is required to produce this alteration. These processes are still active at Site 1031, based on systematic variations in pore-water profiles and temperatures obtained from stable isotopic data on calcium carbonates and the nature of authigenic minerals. At Site 1029, there is no present-day advection of basement fluids though the sediment section, suggesting that this is a relic site for fluid flow.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The modern subarctic Pacific is characterized by a steep salinity-driven surface water stratification, which hampers the supply of saline and nutrient-rich deeper waters into the euphotic zone, limiting productivity. However, the strength of the halocline might have varied in the past. Here, we present diatom oxygen (d18Odiat) and silicon (d30Sidiat) stable isotope data from the open subarctic North-East (NE) Pacific (SO202-27-6; Gulf of Alaska), in combination with other proxy data (Neogloboquadrina pachydermasin d18O, biogenic opal, Ca and Fe intensities, IRD), to evaluate changes in surface water hydrography and productivity during Marine Isotope Stage (MIS) 3, characterized by millennial-scale temperature changes (Dansgaard-Oeschger (D-O) cycles) documented in Greenland ice cores.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a hydrologic reconstruction of the Sahara-Sahel transition, covering the complete last glacial cycle (130 ka), based on a combination of plant-wax-specific hydrogen (dD) and carbon isotopes (d13C). The dD and d13C signatures of long-chain n-alkanes from ODP Site 659 off NW Africa reveal a significant anti-correlation. Complementary to published pollen data, we infer that this plant-wax signal reflects sensitive responses of the vegetation cover to precipitation changes in the Sahel region, as well as varying contributions from biomes north of the Sahara (C3 domain) by North-East Trade Winds (NETW). During arid phases, especially the northern parts of the Sahel likely experienced crucial water stress, which resulted in a pronounced contraction of the vegetation cover, thus reducing the amount of C4 plant waxes from the region. The increase in NETW strength during dry periods further promoted a more pronounced C3-plant-wax signal derived from the North African C3 plant domain. During humid periods, the C4-dominated Sahelian environments spread northward into the Saharan realm, in association with lower NETW inputs of C3 plant waxes. Arid-humid cycles deduced from plant-wax dD are in accordance with concomitant changes in weathering intensity reflected in varying major element distributions. Environmental shifts are generally linked to periods with large fluctuations in Northern Hemisphere summer insolation. During Marine Isotope Stages 2 and 3, when insolation variability was low, coupling of the hydrologic regime to alkenone-based estimates of NE Atlantic sea-surface temperatures becomes apparent.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the Arabian Sea, productivity in the surface waters and particle flux to the deep sea are controlled by monsoonal winds. The flux maxima during the South-West (June-September) and the North-East Monsoon (December-March) are some of the highest particle fluxes recorded with deep-sea sediment traps in the open ocean. Benthic microbial biomass and activities in surface sediments were measured for the first time in March 1995 subsequent to the NE-monsoon and in October 1995 subsequent to the SW-monsoon. These measurements were repeated in April/May 1997 and February/March 1998, at a total of six stations from 1920 to 4420 m water depth. This paper presents a summary on the regional and temporal variability of microbial biomass, production, enzyme activity, degradation of 14C-labeled Synechococcus material as well as sulfate reduction in the northern, western, eastern, central and southern Arabian deep sea. We found a substantial regional variation in microbial biomass and activity, with highest values in the western Arabian Sea (station WAST), decreasing approximately threefold to the south (station SAST). Benthic microbial biomass and activity during the NE-monsoon was as high or higher than subsequent to the SW-monsoon, indicating a very rapid turnover of POC in the surface sediments. This variation in the biomass and activity of the microbial assemblages in the Arabian deep sea can largely be explained by the regional and temporal variation in POC flux. Compared to other abyssal regions, the substantially higher benthic microbial biomasses and activities in the Arabian Sea reflect the extremely high productivity of this tropical basin.