335 resultados para 34 cal ka BP
Resumo:
Long-term vegetation succession and permafrost dynamics in subarctic peat plateaus of west-central Canada have been studied through detailed plant macrofossil analysis and extensive AMS radiocarbon dating of two peat profiles. Peatland inception at these sites occurred around 5800-5100 yr BP (6600-5900 cal. BP) as a result of paludification of upland forests. At the northern peat plateau site, located in the continuous permafrost zone, palaeobotanical evidence suggests that permafrost was already present under the forested upland prior to peatland development. Paludification was initiated by permafrost collapse, but re-aggradation of permafrost occurred soon after peatland inception. At the southern site, located in the discontinuous permafrost zone, the aggradation of permafrost occurred soon after peatland inception. In the peat plateaus, permafrost conditions have remained very stable until present. Sphagnum fuscum-dominated stages have alternated with more xerophytic communities characterized by ericaceous shrubs. Local peat fires have occurred, but most of these did not cause degradation of the permafrost. Starting from 2800-1100 yr BP (2900-1000 cal. BP) consistently dry surface conditions have prevailed, possibly related to continued frost heave or nearby polygon crack formation.
Resumo:
A model is presented for hemipelagic siliciclastic and carbonate sedimentation during the last glacial-interglacial cycle in the Capricorn Channel, southern Great Barrier Reef (GBR). Stable isotope ratios, grainsize, carbonate content and mineralogy were analysed for seven cores in a depth transect from 166 to 2892 m below sea level (mbsl). Results show variations in the flux of terrigenous, neritic and pelagic sediments to the continental slope over the last sea level cycle. During the glacial lowstand terrigenous sediment influenced all the cores down to 2000 mbsl. The percentages of quartz and feldspar in the cores decreased with water depth, while the percentage of clay increased. X-ray diffraction analysis of the glacial lowstand clay mineralogy suggests that the siliciclastic sediment was primarily sourced from the Fitzroy River, which debouched directly into the northwest sector of the Capricorn Channel at this time. The cores also show a decrease in pelagic calcite and an increase in aragonite and high magnesium calcite (HMC) during the glacial. The influx of HMC and aragonite is most likely from reworking of coral reefs exposed on the continental shelf during the glacial, and also from HMC ooids precipitated at the head of the Capricorn Channel at this time. Mass accumulation rates (MARs) are high (13.5 g/cm**/kyr) during the glacial and peak at ~20 g/cm** 3/kyr in the early transgression (16-14 ka BP). MARs then decline with further sea level rise as the Fitzroy River mouth retreats from the edge of the continental shelf after 13.5 ka BP. MARs remain low (4 g/cm**3/kyr) throughout the Holocene highstand. Data for the Holocene highstand indicate there is a reduction in siliciclastic influx to the Capricorn Channel with little quartz and feldspar below 350 mbsl. However, fine-grained fluvial sediments, presumably from the Fitzroy River, were still accumulating on the mid slope down to 2000 mbsl. The proportion of pelagic calcite in the core tops increases with water depth, while HMC decreases, and is present only in trace amounts in cores below 1500 mbsl. The difference in the percentage of HMC in the deeper cores between the glacial and Holocene may reflect differences in supply or deepening of the HMC lysocline during the glacial. Sediment accumulation rates also vary between cores in the Capricorn Channel and do not show the expected exponential decrease with depth. This may be due to intermediate or deep water currents reworking the sediments. It is also possible that present bathymetry data are too sparse to detect the potential role that submarine channels may play in the distribution and accumulation of sediments. Comparison of the Capricorn Channel MARs with those for other mixed carbonate/siliciclastic provinces from the northeast margin of Australia indicates that peak MARs in the early transgression in the Capricorn Channel precede those from the central GBR and south of Fraser Island. The difference in the timing of the carbonate and siliciclastic MAR peaks along the northeast margin is primarily related to differences in the physiography and climate of the provinces. The only common trend in the MARs from the northeast margin of Australia is the near synchronicity of the carbonate and siliciclastic MAR peaks in individual sediment cores, which supports a coeval sedimentation model.
Resumo:
Three sediment cores from the Bragança Peninsula located in the coastal region in the north-eastern portion of Pará State have been studied by pollen analysis to reconstruct Holocene environmental changes and dynamics of the mangrove ecosystem. The cores were taken from an Avicennia forest (Bosque de Avicennia (BDA)), a salt marsh area (Campo Salgado (CS)) and a Rhizophora dominated area (Furo do Chato). Pollen traps were installed in five different areas of the peninsula to study modern pollen deposition. Nine accelerator mass spectrometry radiocarbon dates provide time control and show that sediment deposits accumulated relatively undisturbed. Mangrove vegetation started to develop at different times at the three sites: at 5120 14C yr BP at the CS site, at 2170 14C yr BP at the BDA site and at 1440 14C yr BP at the FDC site. Since mid Holocene times, the mangroves covered even the most elevated area on the peninsula, which is today a salt marsh, suggesting somewhat higher relative sea-levels. The pollen concentration in relatively undisturbed deposits seems to be an indicator for the frequency of inundation. The tidal inundation frequency decreased, probably related to lower sea-levels, during the late Holocene around 1770 14C yr BP at BDA, around 910 14C yr BP at FDC and around 750 14C yr BP at CS. The change from a mangrove ecosystem to a salt marsh on the higher elevation, around 420 14C yr BP is probably natural and not due to an anthropogenic impact. Modern pollen rain from different mangrove types show different ratios between Rhizophora and Avicennia pollen, which can be used to reconstruct past composition of the mangrove. In spite of bioturbation and especially tidal inundation, which change the local pollen deposition within the mangrove zone, past mangrove dynamics can be reconstructed. The pollen record for BDA indicates a mixed Rhizophora/Avicennia mangrove vegetation between 2170 and 1770 14C yr BP. Later Rhizophora trees became more frequent and since ca. 200 14C yr BP Avicennia dominated in the forest.
Resumo:
Sea surface temperatures and sea-ice extent are the most critical variables to evaluate the Southern Ocean paleoceanographic evolution in relation to the development of the global carbon cycle, atmospheric CO2 variability and ocean-atmosphere circulation. In contrast to the Atlantic and the Indian sectors, the Pacific sector of the Southern Ocean has been insufficiently investigated so far. To cover this gap of information we present diatom-based estimates of summer sea surface temperature (SSST) and winter sea-ice concentration (WSI) from 17 sites in the polar South Pacific to study the Last Glacial Maximum (LGM) at the EPILOG time slice (19,000-23,000 cal. years BP). Applied statistical methods are the Imbrie and Kipp Method (IKM) and the Modern Analog Technique (MAT) to estimate temperature and sea-ice concentration, respectively. Our data display a distinct LGM east-west differentiation in SSST and WSI with steeper latitudinal temperature gradients and a winter sea-ice edge located consistently north of the Pacific-Antarctic Ridge in the Ross sea sector. In the eastern sector of our study area, which is governed by the Amundsen Abyssal Plain, the estimates yield weaker latitudinal SSST gradients together with a variable extended winter sea-ice field. In this sector, sea-ice extent may have reached sporadically the area of the present Subantarctic Front at its maximum LGM expansion. This pattern points to topographic forcing as major controller of the frontal system location and sea-ice extent in the western Pacific sector whereas atmospheric conditions like the Southern Annular Mode and the ENSO affected the oceanographic conditions in the eastern Pacific sector. Although it is difficult to depict the location and the physical nature of frontal systems separating the glacial Southern Ocean water masses into different zones, we found a distinct temperature gradient in latitudes straddled by the modern Southern Subtropical Front. Considering that the glacial temperatures north of this zone are similar to the modern, we suggest that this represents the Glacial Southern Subtropical Front (GSSTF), which delimits the zone of strongest glacial SSST cooling (>4K) to its North. The southern boundary of the zone of maximum cooling is close to the glacial 4°C isotherm. This isotherm, which is in the range of SSST at the modern Antarctic Polar Front (APF), represents a circum-Antarctic feature and marks the northern edge of the glacial Antarctic Circumpolar Current (ACC). We also assume that a glacial front was established at the northern average winter sea ice edge, comparable with the modern Southern Antarctic Circumpolar Current Front (SACCF). During the glacial, this front would be located in the area of the modern APF. The northward deflection of colder than modern surface waters along the South American continent leads to a significant cooling of the glacial Humboldt Current surface waters (4-8K), which affects the temperature regimes as far north as into tropical latitudes. The glacial reduction of ACC temperatures may also result in the significant cooling in the Atlantic and Indian Southern Ocean, thus may enhance thermal differentiation of the Southern Ocean and Antarctic continental cooling. Comparison with temperature and sea ice simulations for the last glacial based on numerical simulations show that the majority of modern models overestimate summer and winter sea ice cover and that there exists few models that reproduce our temperature data rather well.
Resumo:
Interannual-decadal variability in the equatorial Pacific El Niño-Southern Oscillation (ENSO) induces climate changes at global scale, but its potential influence during past global climate change is not yet well constrained. New high-resolution eastern equatorial Pacific proxy records of thermocline conditions present new evidence of strong orbital control in ENSO-like variability over the last 275,000 years. Recurrent intervals of saltier thermocline waters are associated with the dominance of La Niña-like conditions during glacial terminations, coinciding with periods of low precession and high obliquity. The parallel dominance of d13C-depleted waters supports the advection of Antarctic origin waters toward the tropical thermocline. This "oceanic tunneling" is proposed to have reinforced orbitally induced changes in ENSO-like variability, composing a complex high- and low-latitude feedback during glacial terminations.
Resumo:
In this paper, we summarize data on terrigenous sediment supply in the Kara Sea and its accumulation and spatial and temporal variability during Holocene times. Sedimentological, organic-geochemical, and micropaleontological proxies determined in surface sediments allow to characterize the modern (riverine) terrigenous sediment input. AMS-14C dated sediment cores from the Ob and Yenisei estuaries and the adjacent inner Kara Sea were investigated to determine the terrigenous sediment fluxes and their relationship to paleoenvironmental changes. The variability of sediment fluxes during Holocene times is related to the post-glacial sea-level rise and changes in river discharge and coastal erosion input. Whereas during the late/middle Holocene most of the terrigenous sediments were deposited in the estuaries and the areas directly off the estuaries, huge amounts of sediments accumulated on the Kara Sea shelf farther north during the early Holocene before about 9 cal kyr BP. The maximum accumulation at that time is related to the lowered sea level, increased coastal erosion, and increased river discharge. Based on sediment thickness charts, echograph profiles and sediment core data, we estimate an average Holocene (0-11 cal kyr BP) annual accumulation of 194,106 t/yr of total sediment for the whole Kara Sea. Based on late Holocene (modern) sediment accumulation in the estuaries, probably 12,106 t/yr of riverine suspended matter (i.e. about 30% of the input) may escape the marginal filter on a geological time scale and is transported onto the open Kara Sea shelf. The high-resolution magnetic susceptibility record of a Yenisei core suggests a short-term variability in Siberian climate and river discharge on a frequency of 300-700 yr. This variability may reflect natural cyclic climate variations to be seen in context with the interannual and interdecadal environmental changes recorded in the High Northern Latitudes over the last decades, such as the NAO/AO pattern. A major decrease in MS values starting near 2.5 cal kyr BP, being more pronounced during the last about 2 cal kyr BP, correlates with a cooling trend over Greenland as indicated in the GISP-2 Ice Core, extended sea-ice cover in the North Atlantic, and advances of glaciers in western Norway. Our still preliminary interpretation of the MS variability has to be proven by further MS records from additional cores as well as other high-resolution multi-proxy Arctic climate records.
Resumo:
An Accelerator Mass Spectrometry (AMS) 14C dated multiparameter event stratigraphy is developed for the Aegean Sea on the basis of highly resolved (centimeter to subcentimeter) multiproxy data collected from four late glacial to Holocene sediment cores. We quantify the degree of proportionality and synchroneity of sediment accumulation in these cores and use this framework to optimize the confidence levels in regional marine, radiocarbon-based chronostratigraphies. The applicability of the framework to published, lower-resolution records from the Aegean Sea is assessed. Next this is extended into the wider eastern Mediterranean, using new and previously published high-resolution data from the northern Levantine and Adriatic cores. We determine that the magnitude of uncertainties in the intercore comparison of AMS 14C datings based on planktonic foraminifera in the eastern Mediterranean is of the order of ±240 years (2 SE). These uncertainties are attributed to synsedimentary and postsedimentary processes that affect the materials dated. This study also offers a background age control that allows for vital refinements to radiocarbon-based chronostratigraphy in the eastern Mediterranean, with the potential for similar frameworks to be developed for any other well-studied region.
Resumo:
Application of the 230Th normalization method to estimate sediment burial fluxes in six cores from the eastern equatorial Pacific (EEP) reveals that bulk sediment and organic carbon fluxes display a coherent regional pattern during the Holocene that is consistent with modern oceanographic conditions, in contrast with estimates of bulk mass accumulation rates (MARs) derived from core chronologies. Two nearby sites (less than 10 km apart), which have different MARs, show nearly identical 230Th-normalized bulk fluxes. Focusing factors derived from the 230Th data at the foot of the Carnegie Ridge in the Panama Basin are >2 in the Holocene, implying that lateral sediment addition is significant in this part of the basin. New geochemical data and existing literature provide evidence for a hydrothermal source of sediment in the southern part of the Panama Basin and for downslope transport from the top of the Carnegie Ridge. The compilation of core records suggests that sediment focusing is spatially and temporally variable in the EEP. During oxygen isotope stage 2 (OIS 2, from 13-27 ka BP), focusing appears even higher compared to the Holocene at most sites, similar to earlier findings in the eastern and central equatorial Pacific. The magnitude of the glacial increase in focusing factors, however, is strongly dependent on the accuracy of age models. We offer two possible explanations for the increase in glacial focusing compared to the Holocene. The first one is that the apparent increase in lateral sediment redistribution is partly or even largely an artifact of insufficient age control in the EEP, while the second explanation, which assumes that the observed increase is real, involves enhanced deep sea tidal current flow during periods of low sea level stand.
Resumo:
Thermokarst lakes and basins are major components of ice-rich permafrost landscapes in East Siberian coastal lowlands and are regarded as indicators of regional climatic changes. We investigate the temporal and spatial dynamics of a 7.5 km**2, partly drained thermokarst basin (alas) using field investigations, remote sensing, Geographic Information Systems (GIS), and sediment analyses. The evolution of the thermokarst basin proceeded in two phases. The first phase started at the Pleistocene/Holocene transition (13 to 12 ka BP) with the initiation of a primary thermokarst lake on the Ice Complex surface. The lake expanded and persisted throughout the early Holocene before it drained abruptly about 5.7 ka BP, thereby creating a > 20 m deep alas with residual lakes. The second phase (5.7 ka BP to present) is characterized by alternating stages of lower and higher thermokarst intensity within the alas that were mainly controlled by local hydrological and relief conditions and accompanied by permafrost aggradation and degradation. It included diverse concurrent processes like lake expansion and stepwise drainage, polygonal ice-wedge growth, and the formation of drainage channels and a pingo, which occurred in different parts of the alas. This more dynamic thermokarst evolution resulted in a complex modern thermokarst landscape. However, on the regional scale, the changes during the second evolutionary phase after drainage of the initial thermokarst lakes were less intense than the early Holocene extensive thermokarst development in East Siberian coastal lowlands as a result of a significant regional change to warmer and wetter climate conditions.
Resumo:
Hydrogen isotope values (dD) of sedimentary terrestrial leaf wax such as n-alkanes or n-acids have been used to map and understand past changes in rainfall amount in the tropics because dD of precipitation is commonly assumed as the first order controlling factor of leaf wax dD. Plant functional types and their photosynthetic pathways can also affect leaf wax dD but these biological effects are rarely taken into account in paleo studies relying on this rainfall proxy. To investigate how biological effects may influence dD values we here present a 37,000-year old record of dD and stable carbon isotopes (d13C) measured on four n-alkanes (n-C27, n-C29, n-C31, n-C33) from a marine sediment core collected off the Zambezi River mouth. Our paleo d13C records suggest that each individual n-alkanes had different C3/C4 proportional contributions. n-C29 was mostly derived from a C3 dicots (trees, shrubs and forbs) dominant vegetation throughout the entire record. In contrast, the longer chain n-C33 and n-C31 were mostly contributed by C4 grasses during the Glacial period but shifted to a mixture of C4 grasses and C3 dicots during the Holocene. Strong correlations between dD and d13C values of n-C33 (correlation coefficient R2 = 0.75, n = 58) and n-C31 (R2 = 0.48, n = 58) suggest that their dD values were strongly influenced by changes in the relative contributions of C3/C4 plant types in contrast to n-C29 (R2 = 0.07, n = 58). Within regions with variable C3/C4 input, we conclude that dD values of n-C29 are the most reliable and unbiased indicator for past changes in rainfall, and that dD and d13C values of n-C31 and n-C33 are sensitive to C3/C4 vegetation changes. Our results demonstrate that a robust interpretation of palaeohydrological data using n-alkane dD requires additional knowledge of regional vegetation changes from which nalkanes are synthesized, and that the combination of dD and d13C values of multiple n-alkanes can help to differentiate biological effects from those related to the hydrological cycle.
Resumo:
Planktonic foraminiferal faunas of the southeast Pacific indicate that sea surface temperatures (SST) have varied by as much as 8-10°C in the Peru Current, and by ?5-7°C along the equator, over the past 150,000 years. Changes in SST at times such as the Last Glacial Maximum reflect incursion of high-latitude species Globorotalia inflata and Neogloboquadrina pachyderma into the eastern boundary current and as far north as the equator. A simple heat budget model of the equatorial Pacific shows that observed changes in Peru Current advection can account for about half of the total variability in equatorial SSTs. The remaining changes in equatorial SST, which are likely related to local changes in upwelling or pycnocline depth, precede changes in polar climates as recorded by d18O. This partitioning of processes in eastern equatorial Pacific SST reveals that net ice-age cooling here reflects first a rapid response of equatorial upwelling to insolation, followed by a later response to changes in the eastern boundary current associated with high-latitude climate (which closely resembles variations in atmospheric CO2 as recorded in the Vostok ice core). Although precise mechanisms responsible for the equatorial upwelling component of climate change remain uncertain, one likely candidate that may operate independently of the ice sheets is insolation-driven changes in El Niño/Southern Oscillation (ENSO) frequency. Early responses of equatorial SST detected both here and elsewhere highlight the sensitivity of tropical systems to small changes in seasonal insolation. The scale of tropical changes we have observed are substantially greater than model predictions, suggesting a need for further quantitative assessment of processes associated with long-term climate change.
Resumo:
A high-resolution study of palaeoenvironmental changes through the late Younger Dryas and early Holocene in the Skagerrak, the eastern North Atlantic, is based on multi-proxy analyses of core MD99-2286 combined with palaeo-water depth modelling for the area. The late Younger Dryas was characterized by a cold ice-distal benthic foraminiferal fauna. After the transition to the Preboreal (c. 11 650 cal. a BP) this fauna was replaced by a Cassidulina neoteretis dominated fauna, indicating the influence of chilled Atlantic Water at the sea floor. Persisting relatively cold bottom-water conditions until c. 10 300 cal. a BP are presumably a result of an outflow of glacial meltwater from the Baltic area across south-central Sweden, which develops a strong stratification of the water column at MD99-2286. A short-term peak in the C/N ratio at c. 10 200 cal. a BP is suggested to indicate input of terrestrial material, which may represent the drainage of an ice-dammed lake in southern Norway, the Glomma event. After the last drainage route across south-central Sweden closed, c. 10 300 cal. a BP, the meltwater influence diminished, and the Skagerrak resembled a fjord with stable inflow of waters from the North Atlantic through the Norwegian Channel and a gradual increase in boreal species. Full interglacial conditions were established at the sea floor from c. 9250 cal. a BP. Subsequent warm stable conditions were interrupted by a short-term cooling around 8300-8200 cal. a BP, representing the 8.2 ka event.
Resumo:
It has long been known that extreme changes in North African hydroclimate occurred during the late Pleistocene yet many discrepancies exist between sites regarding the timing, duration and abruptness of events such as Heinrich Stadial (HS) 1 and the African Humid Period (AHP). The hydroclimate history of the Nile River is of particular interest due to its lengthy human occupation history yet there are presently few continuous archives from the Nile River corridor, and pre-Holocene studies are rare. Here we present new organic and inorganic geochemical records of Nile Basin hydroclimate from an eastern Mediterranean (EM) Sea sediment core spanning the past 28 ka BP. Our multi-proxy records reflect the fluctuating inputs of Blue Nile versus White Nile material to the EM Sea in response to gradual changes in local insolation and also capture abrupt hydroclimate events driven by remote climate forcings, such as HS1. We find strong evidence for extreme aridity within the Nile Basin evolving in two distinct phases during HS1, from 17.5 to 16 ka BP and from 16 to 14.5 ka BP, whereas peak wet conditions during the AHP are observed from 9 to 7 ka BP. We find that zonal movements of the Congo Air Boundary (CAB), and associated shifts in the dominant moisture source (Atlantic versus Indian Ocean moisture) to the Nile Basin, likely contributed to abrupt hydroclimate variability in northern East Africa during HS1 and the AHP as well as to non-linear behavior of hydroclimate proxies. We note that different proxies show variable gradual and abrupt responses to individual hydroclimate events, and thus might have different inherent sensitivities, which may be a factor contributing to the controversy surrounding the abruptness of past events such as the AHP. During the Late Pleistocene the Nile Basin experienced extreme hydroclimate fluctuations, which presumably impacted Paleolithic cultures residing along the Nile corridor.
Resumo:
This dataset contains the collection of available published paired Uk'37 and Tex86 records spanning multi-millennial to multi-million year time scales, as well as a collection of Mg/Ca-derived temperatures measured in parallel on surface and subsurface dwelling foraminifera, both used in the analyses of Ho and Laepple, Nature Geoscience 2016. As the signal-to-noise ratios of proxy-derived Holocene temperatures are relatively low, we selected records that contain at least the last deglaciation (oldest sample >18kyr BP).