343 resultados para 14 alpha-dihydroxy-13(15)-ene-16(12 alpha)-abietanolide
Resumo:
The development of the seasonal phytoplankton bloom in the Ross Sea was studied during two cruises. The first, conducted in November-December 1994, investigated the initiation and rapid growth of the bloom, whereas the second (December 1995-January 1996) concentrated on the bloom's maximum biomass period and the subsequent decline in biomass. Central to the understanding of the controls of growth and the summer decline of the bloom is a quantitative assessment of the growth rate of phytoplankton. Growth rates were estimated over two time scales with different methods. The first estimated daily growth rates from isotropic incorporation under simulated in situ conditions, including 14C, 15N and 32Si uptake measurements combined with estimates of standing stocks of particulate organic carbon, nitrogen and biogenic silica. The second method used daily to weekly changes in biomass at selected locations, with net growth rates being estimated from changes in standing stocks of phytoplankton. In addition, growth rates were estimated in large-volume experiments under optimal irradiances. Growth rates showed distinct temporal patterns. Early in the growing season, short-term estimates suggested that growth rates of in situ assemblages were less than maximum (relative to the temperature-limited maximum) and were likely reduced due to low irradiance regimes encountered under the ice. Growth rates increased thereafter and appeared to reach their maximum as biomass approached the seasonal peak, but decreased markedly in late December. Differences between the major taxonomic groups present were also noted, especially from the isotopic tracer experiments. The haplophyte Phaeocystic antarctica was dominant in 1994 throughout the growing season, and it exhibited the greatest growth rates (mean 0.41/day) during spring. Diatom standing stocks were low early in the growing season, and growth rates averaged 0.100/day. In summer diatoms were more abundant, but their growth rates remained much lower (mean of 0.08/day) than the potential maximum. Understanding growth rate controls is essential to the development of predictive models of the carbon cycle and food webs in Antarctic waters.
Resumo:
Long-term evolution is thought to take opportunities that arise as a consequence of mass extinction (as argued, for example, by Gould, 2002) and the following biotic recovery, but there is absolutely no evidence for this being the case. However, our study shows that eutrophication by oceanic mixing also played a part in the enhancement of several evolutionary events amongst marine organisms, and these results could indicate that the rates of oceanic biodiversification may be slowed if upwelling becomes weakened by future global warming. This paper defines three distinct evolutionary events of resting spores of the marine diatom genus Chaetoceros, to reconstruct past upwelling through the analysis of several DSDP, ODP and land-based successions from the North, South and equatorial Pacific as well as the Atlantic Ocean during the past 40 million years. The Atlantic Chaetoceros Explosion (ACE) event occurred across the E/O boundary in the North Atlantic, and is characterized by resting spore diversification that occurred as a consequence of the onset of upwelling following changes in thermohaline circulation through global cooling in the early Oligocene. Pacific Chaetoceros Explosion events-1 and -2 (PACE-1 and PACE-2) are characterized by relatively higher occurrences of iron input following the Himalayan uplift and aridification at 8.5 Ma and ca. 2.5 Ma in the North Pacific region. These events not only enhanced the diversification and increased abundance of primary producers, including that of Chaetoceros, other diatoms and seaweeds, but also stimulated the evolution of zooplankton and larger predators, such as copepods and marine mammals, which ate these phytoplankton and plants. Current thinking suggests new evolutionary niches open up after a mass extinction, but our study finds that eutrophication can also stimulate evolutionary diversification. Moreover, in the opposite fashion, our results show that as thermohaline circulation abates, global warming progresses and the ocean surface becomes warmer, many marine organisms will be affected by the environmental degradation.
Resumo:
This study investigates the landscape evolution and soil development in the loess area near Regensburg between approximately 6000-2000 yr BP (radiocarbon years), Eastern Bavaria. The focus is on the question how man and climate influenced landscape evolution and what their relative significance was. The theoretical background concerning the factors that controlled prehistoric soil erosion in Middle Europe is summarized with respect to rainfall intensity and distribution, pedogenesis, Pleistocene relief, and prehistoric farming. Colluvial deposits , flood loams, and soils were studied at ten different and representative sites that served as archives of their respective palaeoenvironments. Geomorphological, sedimentological, and pedological methods were applied. According to the findings presented here, there was a high asynchronity of landscape evolution in the investigation area, which was due to prehistoric land-use patterns. Prehistoric land use and settlement caused highly difIerenciated phases of morphodynamic activity and stability in time and space. These are documented at the single catenas ofeach site. In general, Pleistocene relief was substantially lowered. At the same time smaller landforms such as dells and minor asymmetric valleys filled up and strongly transformed. However, there were short phases at many sites, forming short lived linear erosion features ('Runsen'), resulting from exceptional rainfalls. These forms are results of single events without showing regional trends. Generally, the onset of the sedimentation of colluvial deposits took place much earlier (usually 3500 yr BP (radiocarbon) and younger) than the formation of flood loams. Thus, the deposition of flood loams in the Kleine Laaber river valley started mainly as a consequence of iron age farming only at around 2500 yr BP (radiocarbon). A cascade system explains the different ages of colluvial deposits and flood loams: as a result of prehistoric land use, dells and other minor Pleistocene landforms were filled with colluvial sediments. After the filling of these primary sediment traps , eroded material was transported into flood plains, thus forming flood loams. But at the moment we cannot quantify the extent ofprehistoric soil erosion in the investigation area. The three factors that controlled the prehistoric Iandscapc evolution in the Ioess area near Regensburg are as follows: 1. The transformation from a natural to a prehistoric cultural landscape was the most important factor: A landscape with stable relief was changed into a highly morphodynamic one with soil erosion as the dominant process of this change. 2. The sediment traps of the pre-anthropogenic relief determined where the material originated from soil erosion was deposited: either sedimentation took place on the slopes or the filled sediment traps of the slopes rendered flood loam formation possible. Climatic influence of any importance can only be documented as the result of land use in connection with singular and/or statistic events of heavy rainfalls. Without human impact, no significant change in the Holocene landscape would have been possible.