284 resultados para [SO4]2-
Resumo:
High-resolution analyses of the oxygen isotope ratio (18O/16O) of dissolved sulfate in pore waters have been made to depths of >400 meters below seafloor (mbsf) at open-ocean and upwelling sites in the eastern equatorial Pacific Ocean. d18O values of dissolved sulfate (d18O-SO4) at the organic-poor open-ocean Site 1231 gave compositions close to modern seawater (+9.5 per mil vs. Vienna-standard mean ocean water, providing no chemical or isotopic evidence for microbial sulfate reduction (MSR). In contrast, the maximum d18O values at Sites 1225 and 1226, which contain higher organic matter contents, are +20 per mil and +28 per mil, respectively. Depth-correlative trends of increasing d18O-SO4, alkalinity, and ammonium and the presence of sulfide indicate significant oxidation of sedimentary organic matter by sulfate-reducing microbial populations at these sites. Although sulfate concentration profiles at Sites 1225 and 1231 both show similarly flat trends without significant net MSR, d18O-SO4 values at Site 1225 reveal the presence of significant microbial sulfur-cycling activity, which contrasts to Site 1231. This activity may include contributions from several processes, including enzyme-catalyzed equilibration between oxygen in sulfate and water superimposed upon bacterial sulfate reduction, which would tend to shift d18O-SO4 toward higher values than MSR alone, and sulfide oxidation, possibly coupled to reduction of Fe and Mn oxides and/or bacterial disproportionation of sulfur intermediates. Large isotope enrichment factors observed at Sites 1225 and 1226 (epsilon values between 42 per mil and 79 per mil) likely reflect concurrent processes of kinetic isotope fractionation, equilibrium fractionation between sulfate and water, and sulfide oxidation at low rates of sulfate reduction. The oxygen isotope ratio of dissolved pore water sulfate is a powerful tool for tracing microbial activity and sulfur cycling by the deep biosphere of deep-sea sediments.
Resumo:
Original geological, geophysical, lithological, mineralogical data on uplifts of the Central Atlantic are given in the book based on materials of Cruise 1 of the R/V Akademik Nikolaj Strakhov. Geological and geophysical studies include description of the obtained material and analysis of structural and morphological elements of the ocean floor. Results of lithological, petrochemical and geochemical studies were extremely innovative and develop a conceptual model. The latter include studies of petrochemical evolution of tholeiitic alkaline plate volcanism, large-scale hydrothermal transformation of basement rocks - palygorskitization, phosphatization and ferromanganese mineralization. Showing imposition Superposition of hydrogenic alteration on hydrothermally altered rocks and its role in Cenozoic history of sedimentation is shown.
Resumo:
Interstitial water chemistry has proved to be a sensitive indicator for early diagenetic reactions, particularly those related to organic matter oxidation. Downhole chemical variations in the pore waters from Deep Sea Drilling Project Holes 496 and 497 on the Middle America Trench slope off Guatemala are anomalous because both salinity and chlorinity show strong decreases to half the values of seawater, and d18O values become positive (maximum of about +2.5% at the bottom of the holes). These observations are explained in terms of dilution of pore waters after retrieval as a result of decomposition of the gas hydrates before removal of pore waters by shipboard squeezing techniques. In all holes, except Hole 495 (drilled in pelagic sediments), decomposition of organic matter leads to rapid sulfate depletion and subsequent methane generation. Associated with methane generation are large increases in alkalinity and dissolved ammonia. The latter component causes ion exchange reactions with clay minerals, which results in maxima in magnesium and perhaps potassium. At greater depths, as yet unidentified reactions cause the removal of magnesium. Especially in the deeper Trench Sites 499 and 500, rapid variations in calcium, magnesium, and alkalinity occur in turbidite sequences.
Resumo:
Micro-crystalline barites recovered by deep-sea drilling from Site 684 on the Peru margin and Site 799 in the Japan Sea are highly enriched in the heavy sulfur isotope relative to seawater ( d34S up to +84?). This isotopic composition is consistent with remobilization of biogenic barite triggered by sulfate reduction, and subsequent reprecipitation as a diagenetic barite front. The high levels of barium sulfate in these deposits (10-50%) cannot be explained by a diffusive transport model in sediments experiencing a constant rate of sedimentation. When sedimentation rates change radically, the barite front will remain at a given depth interval leading to large accumulations of barium sulfate. Such conditions may have generated the barite deposits at Site 799. At Site 684, on the other hand, there is evidence that the barite deposits are a result of the tectonically-driven advection of sulfate-bearing fluids through the sediment column.
Resumo:
Interstitial waters and sediments from DSDP sites 288 and 289 contain information on the chemistry and diagenesis of carbonate in deep-sea sediments and on the role of volcanic matter alteration processes. Sr/Ca ratios are species dependent in unaltered foraminifera from site 289 and atom ratios (0.0012-0.0016) exceed those predicted by distribution coefficent data (~0.0004). During diagenesis Sr/Ca ratios of carbonates decrease and reach the theoretical distribution at a depth which is identical to the depth of Sr isotopic equilibration, where 87Sr/86Sr ratios of interstitial waters and carbonates converge. Mg/Ca ratios in the carbonates do not increase with depth as found in some other DSDP sites, possibly because of diagenetic re-equilibration with interstitial waters showing decreasing Mg(2+)/Ca(2+) ratios with depth due to Ca input and Mg removal by alteration of volcanic matter. Interstitial 18O/16O ratios increase with depth at site 289 to d18O = 0.67? (SMOW), reflecting carbonate recrystallization at elevated temperatures (>/= 20°C), the first recorded evidence of this effect in interstitial waters. Interstitial Sr2+ concentrations reach high levels, up to 1 mM, chiefly because of carbonate recrystallization. However, 87Sr/86Sr ratios decrease from 0.7092 to less than 0.7078, lower than for contemporaneous sea water, showing that there is a volcanic input of strontium at depth. This volcanic component is recorded in the Sr isotopic composition of recrystallized calcites. Isotopic compositions of the unrecrystallized calcites suggests that the rate of increase of the 87Sr/86Sr ratio of sea water with time has been faster since 3 my ago than in the preceding 13 my.
Resumo:
Large organic food falls to the deep sea - such as whale carcasses and wood logs - support the development of reduced, sulfidic niches in an otherwise oxygenated, oligotrophic deep-sea environment. These transient hot spot ecosystems may serve the dispersal of highly adapted chemosynthetic organisms such as thiotrophic bivalves and siboglinid worms. Here we investigated the biogeochemical and microbiological processes leading to the development of sulfidic niches. Wood colonization experiments were carried out for the duration of one year in the vicinity of a cold seep area in the Nile deep-sea fan (Eastern Mediterranean) at depths of 1690 m. Wood logs were deployed in 2006 during the BIONIL cruise (RV Meteor M70/2 with ROV Quest, Marum, Germany) and sampled in 2007 during the Medeco-2 cruise (RV Pourquoi Pas? with ROV Victor 6000, Ifremer, France). Wood-boring bivalves played a key role in the initial degradation of the wood, the dispersal of wood chips and fecal matter around the wood log, and the provision of colonization surfaces to other organisms. Total oxygen uptake measured with a ROV-operated benthic chamber module was higher at the wood (0.5 m away) in contrast to 10 m away at a reference site (25 mmol m-2 d-1 and 1 mmol m-2 d-1, respectively), indicating an increased activity of sedimentary communities around the wood falls. Bacterial cell numbers associated with wood increased substantially from freshly submerged wood to the wood chip/fecal matter layer next to the wood experiments, as determined with Acridine Orange Direct Counts (AODC) and DAPI-stained counts. Microsensor measurements of sulfide, oxygen and pH were conducted ex situ. Sulfide fluxes were higher at the wood experiments when compared to reference measurements (19 and 32 mmol m-2 d-1 vs. 0 and 16 mmol -2 d-1, respectively). Sulfate reduction (SR) rates at the wood experiments were determined in ex situ incubations (1.3 and 2.0 mmol m-2 d-1) and fell into the lower range of SR rates previously observed from other chemosynthetic habitats at cold seeps. There was no influence of wood deposition on phosphate, silicate and nitrate concentrations, but ammonium concentrations were elevated at the wood chip-sediment boundary layer. Concentrations of dissolved organic carbon were much higher at the wood experiments (wood chip-sediment boundary layer) in comparison to measurements at the reference sites, which may indicate that cellulose degradation was highest under anoxic conditions and hence enabled by anaerobic benthic bacteria, e.g. fermenters and sulfate reducers. Our observations demonstrate that, after one year, the presence of wood at the seafloor had led to the creation of sulfidic niches, comparable to what has been observed at whale falls, albeit at lower rates.
Resumo:
Results of microbiological, biogeochemical and isotope geochemical studies in the Kara Sea are described. Samples for these studies were obtained during Cruise 54 of R/V Akademik Mstislav Keldysh in September 2007. The studied area covered the northern, central, and southwestern parts of the Kara Sea and the Obskaya Guba (Ob River estuary). Quantitative characteristics of total bacterial population and activity of microbial processes in the water column and bottom sediments were obtained. Total abundance of bacterioplankton (BP) varied from 250000 cells/ml in the northern Kara Sea to 3000000 cells/ml in the Obskaya Guba. BP abundance depended on concentration of suspensded matter. Net BP production was minimal in the central Kara Sea (up to 0.15-0.2 µg C/l/day) and maximal (0.5-0.75 µg C/l/day) in the Obskaya Guba. Organic material at the majority of stations at the Ob transect predominantly contained light carbon isotopes (-28.0 to -30.18 per mil) of terrigenous origin. Methane concentration in the surface water layer varied from 0.18 to 2.0 µl CH4/l, and methane oxidation rate varied from 0.1 to 100 nl CH4/l/day. Methane concentration in the upper sediment layer varied from 30 to 300 µl CH4/dm**3; rate of methane formation was varied from 44 to 500 nl CH4/dm**3/day and rate of methane oxidation - from 30 to 2000 nl CH4/dm**3/day. Rate of sulfate reduction varied from 4 to 184 µg S/dm**3/day.
Resumo:
A high-resolution, 8000 year-long ice core record from the Mt. Logan summit plateau (5300 m asl) reveals the initiation of trans-Pacific lead (Pb) pollution by ca. 1730, and a >10-fold increase in Pb concentration (1981-1998 mean = 68.9 ng/l) above natural background (5.6 ng/l) attributed to rising anthropogenic Pb emissions from Asia. The largest rise in North Pacific Pb pollution from 1970-1998 (end of record) is contemporaneous with a decrease in Eurasian and North American Pb pollution as documented in ice core records from Greenland, Devon Island, and the European Alps. The distinct Pb pollution history in the North Pacific is interpreted to result from the later industrialization and less stringent abatement measures in Asia compared to North America and Eurasia. The Mt. Logan record shows evidence for both a rising Pb emissions signal from Asia and a trans-Pacific transport efficiency signal related to the strength of the Aleutian Low.
Resumo:
Ice cores from outside the Greenland and Antarctic ice sheets are difficult to date because of seasonal melting and multiple sources (terrestrial, marine, biogenic and anthropogenic) of sulfates deposited onto the ice. Here we present a method of volcanic sulfate extraction that relies on fitting sulfate profiles to other ion species measured along the cores in moving windows in log space. We verify the method with a well dated section of the Belukha ice core from central Eurasia. There are excellent matches to volcanoes in the preindustrial, and clear extraction of volcanic peaks in the post-1940 period when a simple method based on calcium as a proxy for terrestrial sulfate fails due to anthropogenic sulfate deposition. We then attempt to use the same statistical scheme to locate volcanic sulfate horizons within three ice cores from Svalbard and a core from Mount Everest. Volcanic sulfate is <5% of the sulfate budget in every core, and differences in eruption signals extracted reflect the large differences in environment between western, northern and central regions of Svalbard. The Lomonosovfonna and Vestfonna cores span about the last 1000 years, with good extraction of volcanic signals, while Holtedahlfonna which extends to about AD1700 appears to lack a clear record. The Mount Everest core allows clean volcanic signal extraction and the core extends back to about AD700, slightly older than a previous flow model has suggested. The method may thus be used to extract historical volcanic records from a more diverse geographical range than hitherto.
Resumo:
We present differential bathymetry and sediment core data from the Japan Trench, sampled after the 2011 Tohoku-Oki (offshore Japan) earthquake to document that prominent bathymetric and structural changes along the trench axis relate to a large (~27.7 km**2) slump in the trench. Transient geochemical signals in the slump deposit and analysis of diffusive re-equilibration of disturbed SO4**2- profiles over time constrain the triggering of the slump to the 2011 earthquake. We propose a causal link between earthquake slip to the trench and rotational slumping above a subducting horst structure. We conclude that the earthquake-triggered slump is a leading agent for accretion of trench sediments into the forearc and hypothesize that forward growth of the prism and seaward advance of the deformation front by more than 2 km can occur, episodically, during a single-event, large mega-thrust earthquake.
Resumo:
Submarine permafrost degradation has been invoked as a cause for recent observations of methane emissions from the seabed to the water column and atmosphere of the East Siberian shelf. Sediment drilled 52 m down from the sea ice in Buor Khaya Bay, central Laptev Sea revealed unfrozen sediment overlying ice-bonded permafrost. Methane concentrations in the overlying unfrozen sediment were low (mean 20 µM) but higher in the underlying ice-bonded submarine permafrost (mean 380 µM). In contrast, sulfate concentrations were substantially higher in the unfrozen sediment (mean 2.5 mM) than in the underlying submarine permafrost (mean 0.1 mM). Using deduced permafrost degradation rates, we calculate potential mean methane efflux from degrading permafrost of 120 mg/m**2 per year at this site. However, a drop of methane concentrations from 190 µM to 19 µM and a concomitant increase of methane d13C from -63 per mil to -35 per mil directly above the ice-bonded permafrost suggest that methane is effectively oxidized within the overlying unfrozen sediment before it reaches the water column. High rates of methane ebullition into the water column observed elsewhere are thus unlikely to have ice-bonded permafrost as their source.
Resumo:
The combination of multiple sediment sources and varying rates of sediment accumulation in the Celebes and Sulu seas have had significant impact on the processes of diagenesis, mineralization, and pore-fluid flow. Isotopic and mass-balance calculations help elucidate the various reactions taking place in these western Pacific basins, where ash alteration and basalt-seawater interactions are superimposed on the effects of sulfate oxidation of organic carbon and biogenic methane and of dolomitization of biogenic carbonates. Based on the shape of the calcium and magnesium depth profiles, two major reactive zones have been identified. The first is located near the zone of sulfate depletion and is characterized by carbonate recrystallization, dolomitization and ash alteration reactions at both Ocean Drilling Program Sites 767 and 768. The second reactive zone corresponds to the bottom of the sedimentary sequence and is characterized by alteration reactions in the basement (Site 767) and in the pyroclastic deposits beneath the sediment column (Site 768).
Resumo:
Interstitial waters from four sites of the Japan Sea (794 to 797) have been analyzed for stable isotopes (delta D, delta11B, delta18O, and delta34S) and 87Sr/86Sr, besides major and minor ions. The isotopic composition is dominated by organic matter degradation, alteration of ash layers and volcaniclastic sands, silica transformation (opal A/CT), and basement alteration. Organic matter degradation and corresponding sulfate reduction leads to 32S depletion and is dependent upon sedimentation rate. The remaining sulfate reservoir is characterized by very "heavy" delta34S ratios, up to +93 ? (rel. CDT = Canyon Diabolo Troilite). "Barite fronts," which may develop in such sediments, should also be characterized by very "heavy" sulfur isotopes. The alteration of volcaniclastic material in the Quaternary sections influences the delta18O (-1.5 ? shift) and delta11B (desorption and later adsorption of "labile"11B). A pronounced positive delta11B anomaly at Site 795 represents the depth range of preferential 10B uptake by alteration products of the ash layers. At Site 796 delta D, delta11B, and 87Sr/86Sr are severely affected by alteration processes of volcaniclastic sands. The opal A/CT transformation may influence the oxygen isotopes and serves as a potential source for B, which is liberated at this interval at Site 795. This positive B anomaly is not reflected in the delta11B profile. Basement alteration processes dominate the sedimentary sequence below the opal A/CT transition, which serves as a chemical and physical boundary. The decreases in delta D and delta18O are probably related to a "paleo ocean water reservoir" situated in the permeable Layer II of the oceanic crust, as is indicated by the positive correlation between these two parameters. Besides Mg, alkalies and delta18O basement rocks also serve as a sink for 11 B (Site 795) and are the source for the Ca and Sr increases, as is documented by the less radiogenic 87Sr/86Sr ratio. 87Sr/86Sr ratios for the lowermost pore waters from Site 795 (0.70529) are comparable to those from volcaniclastic rocks from the "Green Tuff' region (0.704 to 0.706) and oil field brines from the Niigata Oil Field.
Resumo:
The book summarizes results of long-term studies of sulfur geochemistry in bottom sediments of seas and oceans. Processes of hydrogen sulfide formation in bacterial reduction of sulfates, its transformation into transient and stable compounds of reduced sulfur in liquid and solid phases of sediments are under consideration. Regularities of distribution of sulfate and reduced sulfur in ocean sediments are shown. Problems of sulfur budget in the modern oceans are discussed.
Resumo:
Benthic oxygen and nitrogen fluxes were quantified within the years 2012 to 2014 at different time series sites in the southern North Sea with the benthic lander NuSObs (Nutrient and Suspension Observatory). In situ incubations of sediments, in situ bromide tracer studies, sampling of macrofauna and pore water investigations revealed considerable seasonal and spatial variations of oxygen and nitrogen fluxes. Seasonal and spatial variations of oxygen fluxes were observed between two different time series sites, covering different sediment types and/or different benthic macrofaunal communities. On a sediment type with a high content of fine grained particles (<63 µm) oxygen fluxes of -15.5 to -25.1 mmol/m**2/d (June 2012), -2.0 to -8.2 mmol/m**2/d (March 2013), -16.8 to -21.5 mmol/m**2/d (November 2013) and -6.1 mmol/m**2/d (March 2014) were measured. At the same site a highly diverse community of small species of benthic macrofauna was observed. On a sediment type with a low content of fine grained particles (<63 µm) high oxygen fluxes (-33.2 mmol/m**2/d August 2012; -47.2 to -55.1 mmol/m**2/d November 2013; -16.6 mmol/m**2/d March 2014) were observed. On this sediment type a less diverse benthic macrofaunal community, which was dominated by the large bodied suspension feeder Ensis directus, was observed. Average annual rain rates of organic carbon and organic nitrogen to the seafloor of 7.44 mol C/m**2/y and 1.34 mol N/m**2/y were estimated. On average 79% of the organic bound carbon and 95% of the organic bound nitrogen reaching the seafloor are recycled at the sediment-water interface.