96 resultados para Zero-inflated Count Data


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The compositional record of the AND-2A drillcore is examined using petrological, sedimentological, volcanological and geochemical analysis of clasts, sediments and pore waters. Preliminary investigations of basement clasts (granitoids and metasediments) indicate both local and distal sources corresponding to variable ice-volume and ice-flow directions. Low abundance of sedimentary clasts (e.g., arkose, litharenite) suggests reduced contributions from sedimentary covers while intraclasts (e.g., diamictite, conglomerate) attest to intrabasinal reworking. Volcanic material includes pyroclasts (e.g., pumice, scoria), sediments and lava. Primary and reworked tephra layers occur within the Early Miocene interval (1093 to 640 metres below sea floor mbsf). The compositions of volcanic clasts reveal a diversity of alkaline types derived from the McMurdo Volcanic Group. Finer-grained sediments (e.g., sandstone, siltstone) show increases in biogenic silica and volcanic glass from 230 to 780 mbsf and higher proportions of terrigenous material c. 350 to 750 mbsf and below 970 mbsf. Basement clast assemblages suggest a dominant provenance from the Skelton Glacier - Darwin Glacier area and from the Ferrar Glacier - Koettlitz Glacier area. Provenance of sand grains is consistent with clast sources. Thirteen Geochemical Units are established based on compositional trends derived from continuous XRF scanning. High values of Fe and Ti indicate terrigenous and volcanic sources, whereas high Ca values signify either biogenic or diagenic sources. Highly alkaline and saline pore waters were produced by chemical exchange with glass at moderately elevated temperatures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the results of a combined study, using cosmogenic 36Cl exposure dating and terrestrial digital photogrammetry, of the Palliser Rockslide located in the southeastern Canadian Rocky Mountains. This site is particularly well-suited to demonstrate how this multi-disciplinary approach can be used to differentiate distinct rocksliding events, estimate their volume, and establish their chronology and recurrence interval. Observations suggest that rocksliding has been ongoing since the late Pleistocene deglaciation. Two major rockslide events have been dated at 10.0 ± 1.2 kyr and 7.7 ± 0.8 kyr before present, with failure volumes of 40 Mm3 and 8 Mm3, respectively. The results have important implications concerning our understanding of the temporal distribution of paraglacial rockslides and rock avalanches; they provide a better understanding of the volumes and failure mechanisms of recurrent failure events; and they represent the first absolute ages of a prehistoric high magnitude event in the Canadian Rocky Mountains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The MAREDAT atlas covers 11 types of plankton, ranging in size from bacteria to jellyfish. Together, these plankton groups determine the health and productivity of the global ocean and play a vital role in the global carbon cycle. Working within a uniform and consistent spatial and depth grid (map) of the global ocean, the researchers compiled thousands and tens of thousands of data points to identify regions of plankton abundance and scarcity as well as areas of data abundance and scarcity. At many of the grid points, the MAREDAT team accomplished the difficult conversion from abundance (numbers of organisms) to biomass (carbon mass of organisms). The MAREDAT atlas provides an unprecedented global data set for ecological and biochemical analysis and modeling as well as a clear mandate for compiling additional existing data and for focusing future data gathering efforts on key groups in key areas of the ocean. This is a gridded data product about diazotrophic organisms . There are 6 variables. Each variable is gridded on a dimension of 360 (longitude) * 180 (latitude) * 33 (depth) * 12 (month). The first group of 3 variables are: (1) number of biomass observations, (2) biomass, and (3) special nifH-gene-based biomass. The second group of 3 variables is same as the first group except that it only grids non-zero data. We have constructed a database on diazotrophic organisms in the global pelagic upper ocean by compiling more than 11,000 direct field measurements including 3 sub-databases: (1) nitrogen fixation rates, (2) cyanobacterial diazotroph abundances from cell counts and (3) cyanobacterial diazotroph abundances from qPCR assays targeting nifH genes. Biomass conversion factors are estimated based on cell sizes to convert abundance data to diazotrophic biomass. Data are assigned to 3 groups including Trichodesmium, unicellular diazotrophic cyanobacteria (group A, B and C when applicable) and heterocystous cyanobacteria (Richelia and Calothrix). Total nitrogen fixation rates and diazotrophic biomass are calculated by summing the values from all the groups. Some of nitrogen fixation rates are whole seawater measurements and are used as total nitrogen fixation rates. Both volumetric and depth-integrated values were reported. Depth-integrated values are also calculated for those vertical profiles with values at 3 or more depths.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since 1983 time-series traps have been deployed in the Atlantic sector of the Southern Ocean to measure the flux of organic carbon, biogenic silica and carbonate. The organic carbon flux data are used to calculate primary production rates and organic carbon fluxes at 100 m water depth. From these calculations, annual primary production rates range from about 170 g C m**-2 in the coastal area (Bransfield Strait) to almost zero in the Permanent Sea-Ice Zone. High rates (of about 80 g C m**-2 year**-1 ) were calculated for the Polar Front Zone and rather low values (about 20 g C m**-2 year**-1 ) characterize the Maud Rise area. The estimated primary production for the entire Southern Ocean (south of 50°S), using various subsystems with characteristic carbon fluxes, is in the order of 1 * 10**9tons year**-1; the organic carbon flux out of the photic layer is 0.17 * 10**9tons year**-1. Our calculation of the Southern Ocean total annual primary production is substantially lower than previously reported values.