172 resultados para Sterry, Paul: Birds of the Mediterranean : a photographic guide
Resumo:
Sulfidic muds of cold seeps on the Nile Deep Sea Fan are populated by different types of mat-forming sulfide-oxidizing bacteria. The predominant sulfide oxidizers of three different mats were identified by microscopic and phylogenetic analyses as (i) Arcobacter species producing cotton-ball-like sulfur precipitates, (ii) large filamentous sulfur bacteria including Beggiatoa species, or (iii) single, spherical cells resembling Thiomargarita species. High resolution in situ microprofiles revealed different geochemical settings selecting for different mat types. Arcobacter mats occurred where oxygen and sulfide overlapped at the bottom water interface. Filamentous sulfide oxidizers were associated with non-overlapping, steep gradients of oxygen and sulfide. A dense population of Thiomargarita was favored by temporarily changing supplies of oxygen and sulfide. These results indicate that the decisive factors in selecting for different mat-forming bacteria within one deep-sea province are spatial or temporal variations in energy supply. Furthermore, the occurrence of Arcobacter spp.-related 16S rRNA genes in the sediments below all three types of mats, as well as on top of brine lakes of the Nile Deep Sea Fan, indicates that this group of sulfide oxidizers can switch between different life modes depending on the geobiochemical habitat setting.
Resumo:
Spreading pattern and mesoscale structure of Mediterranean water outflow in the eastern North Atlantic are studied on the basis of historical hydrographical records. Effect of bottom topography on Mediterranean water distribution is revealed. It is shown that the Mediterranean water outflow is divided into two streams after leaving the Gulf of Cadiz. These are northwestern and southwestern ones; the former is more intensive and spreads in more regular and continuous way. West of the Tejo (Tagus) Plateau it splits into three branches; the most intense of them keeps continuity up to 14°W. The less intensive southwestern stream passes south of the Gettysburg Bank and splits into two branches immediately after the Gulf of Cadiz. From 11°W, this stream has lenticular, intermittent character. West of 14°-15°W all Mediterranean water branches are represented mainly by isolated salty patches. As a result of historical data analysis in the 32°-44°N, 8°-22°W area, 30 Mediterranean water lenses have been found; 12 of them had not been previously mentioned in publications. A table of main parameters of Mediterranean water lenses is presented. It includes data of 108 observations from 1911 to 1993.
Resumo:
Porous seep-carbonates are exposed at mud volcanoes in the eastern Mediterranean Sea. The 13C-depleted aragonitic carbonates formed as a consequence of the anaerobic oxidation of methane in a shallow sub-surface environment. Besides the macroscopically visible cavernous fabric, extensive carbonate corrosion was revealed by detailed analysis. After erosion of the background sediments, the carbonates became exposed to oxygenated bottom waters that are periodically influenced by the release of methane and upward diffusion of hydrogen sulphide. We suggest that carbonate corrosion resulted from acidity locally produced by aerobic oxidation of methane and hydrogen sulphide in the otherwise, with respect to aragonite, oversaturated bottom waters. Although it remains to be tested whether the mechanisms of carbonate dissolution suggested herein are valid, this study reveals that a better estimate of the significance of corrosion is required to assess the amount of methane-derived carbon that is permanently fixed in seep-carbonates.
Resumo:
In a gravity core from the eastern Mediterranean Sea, a chemically and mineralogically distinct, 5.5-cm-thick layer is present above sapropel S-1 and overlain by hemipelagic marls. Calcite is completely absent in this exotic layer, dolomite is present only in small amounts, and the Cr concentrations are significantly enhanced. The layer was deposited primarily under reducing conditions, but the distributions of redox-sensitive elements show that a large part of the exotic layer is now oxidised by a downward-progressing oxidation front. Sediments from within the nearby anoxic, hypersaline Urania Basin are similar to those from the exotic layer, in particular in S-, C-, and O-isotope distributions of pyrite and dolomite, as well as increased Cr concentrations. Mud expulsion due to expansion of gas-rich mud is proposed to explain the presence of the exotic layer outside the Urania Basin. The deposition of an anoxic layer above S-1 shielded the sapropel from oxidation which resulted in the rare occurrence of a complete preservation of S-1 and provides the first minimum age for the start of anoxic mud accumulation in the Urania Basin.
Resumo:
Bathymetry based on data recorded during TTR6 between 05.07.1996 and 20.08.1996 in the Black Sea. In the central Black Sea, the aim of TTR-6 the investigation was a bathymetric map of a field of mud volcanoes known from the previous TTR cruises, during transit. In the Sorokin Trough, where gas hydrates were earlier obtained from sea bottom sediments the primary goals concerned the elucidation of the structure of clay diapiric folds and the searching for mud volcanoes and other evidence for fluid flux through the seafloor. The task of looking for the seafloor manifestation of deep fluid emanation was set in the Pallas Uplift area. The EM12s surveying on the Caucasian margin was aimed at the construction of the first detailed bathymetric map of this area.
Resumo:
Water exchange between the Black Sea and the Mediterranean Sea has been a major focus of the paleohydrography of the eastern Mediterranean. Glacial melt water released from the Black Sea is a potential factor in the formation of sapropel S1, an organic-rich sediment layer that accumulated during the Early Holocene. A high-resolution study done on sediments from the Marmara Sea, the gateway between the Mediterranean and the Black Sea, sheds light on the Holocene exchange processes. Past sea surface temperature and sea surface salinity (SSS) were derived from stable oxygen isotope ratios (delta18O) of foraminiferal calcite and alkenone unsaturation ratios (Uk'37). Heavy delta18O values and high SSS in the Marmara Sea suggest absence of low salinity water from the Black Sea during S1. The comparison with data from the Levantine Basin and southern Aegean Sea outlines gradients of freshening in the eastern Mediterranean Sea, whereby the major sources of freshwater were closer to the Levantine Basin. It is thus concluded that the Black Sea was not a major freshwater source contributing to formation of S1. Given the absence of a low salinity layer, the deposition of organic-rich sediments corresponding to S1 in the Marmara Sea is likely the result of the global transgression and the concomitant re-organization of biogeochemical cycles, leading to enhanced productivity as shown by Globigerina bulloides.