112 resultados para Opossum shrimp


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The discovery of deep-sea hydrothermal vents in 1977 revolutionized our understanding of the energy sources that fuel primary productivity on Earth. Hydrothermal vent ecosystems are dominated by animals that live in symbiosis with chemosynthetic bacteria. So far, only two energy sources have been shown to power chemosynthetic symbioses: reduced sulphur compounds and methane. Using metagenome sequencing, single-gene fluorescence in situ hybridization, immunohistochemistry, shipboard incubations and in situ mass spectrometry, we show here that the symbionts of the hydrothermal vent mussel Bathymodiolus from the Mid-Atlantic Ridge use hydrogen to power primary production. In addition, we show that the symbionts of Bathymodiolus mussels from Pacific vents have hupL, the key gene for hydrogen oxidation. Furthermore, the symbionts of other vent animals such as the tubeworm Riftia pachyptila and the shrimp Rimicaris exoculata also have hupL. We propose that the ability to use hydrogen as an energy source is widespread in hydrothermal vent symbioses, particularly at sites where hydrogen is abundant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vertical distribution of mesoplankton was studied over a single season in 2001 at two sites in the western and eastern parts of the northern margin of the North Atlantic gyre. Plankton was sampled both with use of BR 113/140 net and observed from the Mir deep-sea manned submersible. In near-slope waters southeast of Newfoundland (Titanic Polygon) there occurred intensive interaction between subtropical and sub-polar waters and plankton communities. The subtropical gyre community being more mature from the succession viewpoint created a ''net'' of carnivores and scavengers (shrimp and smaller animals) feeding plankton supplied from the north and thus increasing their own biomass. Due to features of hydrological conditions in 2001 in contrast to other years, the plankton supplied from the north was dominated by small copepods, while abundance of larger Calanus hyperboreus was small. Perhaps due to this fact, abundance of macroplanktonic shrimp decreased, while abundance of mesoplanktonic carnivores (Themisto, Sagitta, and Pareuchaeta) increased. In East Atlantic, within the Porcupine abyssal plain (Bismark Polygon) contrasts in frontal boundaries decreased and community interaction became less expressed. While vertical distribution of plankton at Titanic Polygon was characterized by a series of extraordinary features, distribution at Bismark Polygon was much more ordinary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In summer 2003 we continued our long-term series of observations over the zooplankton community within the Titanic Polygon (area of the frontal zone of Gulf Stream and the Labrador Current) in the North Atlantic, where interaction of ecosystems of subpolar and warm waters takes place. Depending on hydrological situation occurring in the frontal zone interrelated interannual variations in abundance and biomass of plankton species including Calanus hyperboreus and mesopelagic shrimps of Acanthephyra genus were observed. In different years contribution of two parallel trophic nets passing primarily through the larger and smaller plankters to formation of the community varied. Data on the size structure of population of macroplankton shrimps are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper reports the first data on geochemistry and U-Pb SHRIMP geochronology of zircons from garnet amphibolites whose fragments are hosted by the sole of the ophiolite complex of the Kamchatsky Cape, eastern Kamchatka. The zircons compose homogeneous sampling, have relatively small sizes, are anhedral, have no oscillatory zoning, and possess practically no inclusions. Chemical and photoluminescent characteristics of the zircons testify to their metamorphic genesis. U-Pb SHRIMP dates of the zircons (81.4+/-9.6 Ma) indicate that metamorphism of the amphibolite complex took place in Campanian, Late Cretaceous. These dates seem to correspond to the peak of high-pressure metamorphism, which is thought to be related to origin of an ophiolite complex of the suprasubduction type and its uplift within the Kronotsky Island arc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The discovery of deep-sea hydrothermal vents in 1977 revolutionized our understanding of the energy sources that fuel primary productivity on Earth. Hydrothermal vent ecosystems are dominated by animals that live in symbiosis with chemosynthetic bacteria. So far, only two energy sources have been shown to power chemosynthetic symbioses: reduced sulphur compounds and methane. Using metagenome sequencing, single-gene fluorescence in situ hybridization, immunohistochemistry, shipboard incubations and in situ mass spectrometry, we show here that the symbionts of the hydrothermal vent mussel Bathymodiolus from the Mid-Atlantic Ridge use hydrogen to power primary production. In addition, we show that the symbionts of Bathymodiolus mussels from Pacific vents have hupL, the key gene for hydrogen oxidation. Furthermore, the symbionts of other vent animals such as the tubeworm Riftia pachyptila and the shrimp Rimicaris exoculata also have hupL. We propose that the ability to use hydrogen as an energy source is widespread in hydrothermal vent symbioses, particularly at sites where hydrogen is abundant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We estimated the relative contribution of atmospheric Nitrogen (N) input (wet and dry deposition and N fixation) to the epipelagic food web by measuring N isotopes of different functional groups of epipelagic zooplankton along 23°W (17°N-4°S) and 18°N (20-24°W) in the Eastern Tropical Atlantic. Results were related to water column observations of nutrient distribution and vertical diffusive flux as well as colony abundance of Trichodesmium obtained with an Underwater Vision Profiler (UVP5). The thickness and depth of the nitracline and phosphocline proved to be significant predictors of zooplankton stable N isotope values. Atmospheric N input was highest (61% of total N) in the strongly stratified and oligotrophic region between 3 and 7°N, which featured very high depth-integrated Trichodesmium abundance (up to 9.4×104 colonies m-2), strong thermohaline stratification and low zooplankton delta15N (~2 per mil). Relative atmospheric N input was lowest south of the equatorial upwelling between 3 and 5°S (27%). Values in the Guinea Dome region and north of Cape Verde ranged between 45 and 50%, respectively. The microstructure-derived estimate of the vertical diffusive N flux in the equatorial region was about one order of magnitude higher than in any other area (approximately 8 mmol m-2 d 1). At the same time, this region received considerable atmospheric N input (35% of total). In general, zooplankton delta15N and Trichodesmium abundance were closely correlated, indicating that N fixation is the major source of atmospheric N input. Although Trichodesmium is not the only N fixing organism, its abundance can be used with high confidence to estimate the relative atmospheric N input in the tropical Atlantic (r2 = 0.95). Estimates of absolute N fixation rates are two- to tenfold higher than incubation-derived rates reported for the same regions. Our approach integrates over large spatial and temporal scales and also quantifies fixed N released as dissolved inorganic and organic N. In a global analysis, it may thus help to close the gap in oceanic N budgets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rate of CO2 assimilation was determined above the Broken Spur and TAG active hydrothermal fields for three main ecosystems: (1) hydrothermal vents; (2) 300 m near-bottom layer of plume water; and (3) bottom sediments. In water samples from warm (40-45°C) vents assimilation rates were maximal and reached 2.82-3.76 µg C/l/day. In plume waters CO2 assimilation rates ranged from 0.38 to 0.65 µg C/l/day. In bottom sediments CO2 assimilation rates varied from 0.8 to 28.0 µg C/l/day, rising up to 56 mg C/kg/day near shrimp swarms. In the most active plume zone of the long-living TAG field bacterial production of organic matter (OM) from carbonic is up to 170 mg C/m**2/day); production of autotrophic process of bacterial chemosynthesis reaches about 90% (156 mg C/m**2/day). Thus, chemosynthetic production of OM in September-October is almost equal to that of photosynthetic production in the oceanic region. Bacterial production of OM above the Broken Spur hydrothermal field is one order lower and reaches only 20 mg C/m**2/day.