106 resultados para Moss, Kira
Resumo:
Permafrost dynamics play an important role in high-latitude peatland carbon balance and are key to understanding the future response of soil carbon stocks. Permafrost aggradation can control the magnitude of the carbon feedback in peatlands through effects on peat properties. We compiled peatland plant macrofossil records for the northern permafrost zone (515 cores from 280 sites) and classified samples by vegetation type and environmental class (fen, bog, tundra and boreal permafrost, thawed permafrost). We examined differences in peat properties (bulk density, carbon (C), nitrogen (N) and organic matter content, C/N ratio) and C accumulation rates among vegetation types and environmental classes.
Resumo:
Vegetation changes, such as shrub encroachment and wetland expansion, have been observed in many Arctic tundra regions. These changes feed back to permafrost and climate. Permafrost can be protected by soil shading through vegetation as it reduces the amount of solar energy available for thawing. Regional climate can be affected by a reduction in surface albedo as more energy is available for atmospheric and soil heating. Here, we compared the shortwave radiation budget of two common Arctic tundra vegetation types dominated by dwarf shrubs (Betula nana) and wet sedges (Eriophorum angustifolium) in North-East Siberia. We measured time series of the shortwave and longwave radiation budget above the canopy and transmitted radiation below the canopy. Additionally, we quantified soil temperature and heat flux as well as active layer thickness. The mean growing season albedo of dwarf shrubs was 0.15 ± 0.01, for sedges it was higher (0.17 ± 0.02). Dwarf shrub transmittance was 0.36 ± 0.07 on average, and sedge transmittance was 0.28 ± 0.08. The standing dead leaves contributed strongly to the soil shading of wet sedges. Despite a lower albedo and less soil shading, the soil below dwarf shrubs conducted less heat resulting in a 17 cm shallower active layer as compared to sedges. This result was supported by additional, spatially distributed measurements of both vegetation types. Clouds were a major influencing factor for albedo and transmittance, particularly in sedge vegetation. Cloud cover reduced the albedo by 0.01 in dwarf shrubs and by 0.03 in sedges, while transmittance was increased by 0.08 and 0.10 in dwarf shrubs and sedges, respectively. Our results suggest that the observed deeper active layer below wet sedges is not primarily a result of the summer canopy radiation budget. Soil properties, such as soil albedo, moisture, and thermal conductivity, may be more influential, at least in our comparison between dwarf shrub vegetation on relatively dry patches and sedge vegetation with higher soil moisture.
Resumo:
Sphagnum moss is the dominant plant type in modern boreal and (sub)arctic ombrotrophic bogs and is of particular interest due to its sensitivity to climate and its important role in wetland biogeochemistry. Here we reconstruct the occurrence of Sphagnum moss - and associated biogeochemical change - within a thermally immature, early Paleogene (~55 Ma) lignite from Schöningen, NW Germany using a high-resolution, multi-proxy approach. Changes in the abundance of Sphagnum-type spores and the C23/C31n-alkane ratio indicate the expansion of Sphagnum moss within the top of the lignite seam. This Sphagnum moss expansion is associated with the development of waterlogged conditions, analogous to what has been observed within modern ombrotrophic bogs. The similarity between biomarkers and palynology also indicates that the C23/C31n-alkane ratio may be a reliable chemotaxonomic indicator for Sphagnum during the early Paleogene. The d13C value of bacterial hopanes and mid-chain n-alkanes indicates that a rise in water table is not associated with a substantial increase in aerobic methanotrophy. The absence of very low d13C values within the top of the seam could reflect either less methanogenesis or less efficient methane oxidation under waterlogged sulphate-rich conditions.
Resumo:
Microorganisms inhabit very different soil habitats in the ice-free areas of Antarctica, playing a major role in nutrient cycling in cold environments. We studied the soil characteristics and the dominant bacterial composition from nine different soil profiles located on Livingston Island (maritime Antarctica). The total carbon (TC) and total nitrogen (TN) values were high for the vegetated soils, decreasing with depth, whereas the values for the mineral soils were generally low. Soil pH was more acidic for moss-covered soils and neutral to alkaline for mineral soils. Numbers of culturable heterotrophic bacteria were higher at vegetated sites, but significant numbers were also detectable in carbon-depleted soils. Patterns of denaturing gradient gel electrophoresis (DGGE) revealed a highly heterogeneous picture throughout the soil profiles. Subsequent sequencing of DGGE bands revealed in total 252 sequences that could be assigned to 114 operational taxonomic units, showing the dominance of members of the Bacteroidetes and Acidobacteria. The results of phospholipid fatty acid analysis showed a lack of unsaturated fatty acids for most of the samples. Samples with a prevalence of unsaturated over saturated fatty acids were restricted to several surface samples. Statistical analysis showed that the dominant soil bacterial community composition is most affected by TC and TN contents and soil physical factors such as grain size and moisture, but not pH. Keywords
Resumo:
This synthesis dataset contains records of freshwater peat and lake sediments from continental shelves and coastal areas. Information included is site location (when available), thickness and description of terrestrial sediments as well as underlying and overlying sediments, dates (when available), and references.
Resumo:
Although soil algae are among the main primary producers in most terrestrial ecosystems of continental Antarctica, there are very few quantitative studies on their relative proportion in the main algal groups and on how their distribution is affected by biotic and abiotic factors. Such knowledge is essential for understanding the functioning of Antarctic terrestrial ecosystems. We therefore analyzed biological soil crusts from northern Victoria Land to determine their pH, electrical conductivity (EC), water content (W), total and organic C (TC and TOC) and total N (TN) contents, and the presence and abundance of photosynthetic pigments. In particular, the latter were tested as proxies for biomass and coarse-resolution community structure. Soil samples were collected from five sites with known soil algal communities and the distribution of pigments was shown to reflect differences in the relative proportions of Chlorophyta, Cyanophyta and Bacillariophyta in these sites. Multivariate and univariate models strongly indicated that almost all soil variables (EC, W, TOC and TN) were important environmental correlates of pigment distribution. However, a significant amount of variation is independent of these soil variables and may be ascribed to local variability such as changes in microclimate at varying spatial and temporal scales. There are at least five possible sources of local variation: pigment preservation, temporal variations in water availability, temporal and spatial interactions among environmental and biological components, the local-scale patchiness of organism distribution, and biotic interactions.
Resumo:
Samoylov Island is centrally located within the Lena River Delta at 72° N, 126° E and lies within the Siberian zone of continuous permafrost. The landscape on Samoylov Island consists mainly of late Holocene river terraces with polygonal tundra, ponds and lakes, and an active floodplain. The island has been the focus of numerous multidisciplinary studies since 1993, which have focused on climate, land cover, ecology, hydrology, permafrost and limnology. This paper aims to provide a framework for future studies by describing the characteristics of the island's meteorological parameters (temperature, radiation and snow cover), soil temperature, and soil moisture. The land surface characteristics have been described using high resolution aerial images in combination with data from ground-based observations. Of note is that deeper permafrost temperatures have increased between 0.3 to 1.3 °C over the last five years. However, no clear warming of air and active layer temperatures is detected since 1998, though winter air temperatures during recent years have not been as cold as in earlier years.
Resumo:
Over 150 million cubic meter of sand-sized sediment has disappeared from the central region of the San Francisco Bay Coastal System during the last half century. This enormous loss may reflect numerous anthropogenic influences, such as watershed damming, bay-fill development, aggregate mining, and dredging. The reduction in Bay sediment also appears to be linked to a reduction in sediment supply and recent widespread erosion of adjacent beaches, wetlands, and submarine environments. A unique, multi-faceted provenance study was performed to definitively establish the primary sources, sinks, and transport pathways of beach sized-sand in the region, thereby identifying the activities and processes that directly limit supply to the outer coast. This integrative program is based on comprehensive surficial sediment sampling of the San Francisco Bay Coastal System, including the seabed, Bay floor, area beaches, adjacent rock units, and major drainages. Analyses of sample morphometrics and biological composition (e.g., Foraminifera) were then integrated with a suite of tracers including 87Sr/86Sr and 143Nd/144Nd isotopes, rare earth elements, semi-quantitative X-ray diffraction mineralogy, and heavy minerals, and with process-based numerical modeling, in situ current measurements, and bedform asymmetry to robustly determine the provenance of beach-sized sand in the region.
Resumo:
Lemmings construct nests of grass and moss under the snow during winter, and counting these nests in spring is 1 method of obtaining an index of winter density and habitat use. We counted winter nests after snow melt on fixed grids on 5 areas scattered across the Canadian Arctic and compared these nest counts to population density estimated by mark-recapture on the same areas in spring and during the previous autumn. Collared lemmings were a common species in most areas, some sites had an abundance of brown lemmings, and only 2 sites had tundra voles. Winter nest counts were correlated with lemming densities estimated in the following spring (r(s) = 0.80, P < 0.001), but less well correlated with densities the previous autumn (r(s) = 0.55, P < 0.001). Winter nest counts can be used to predict spring lemming densities with a log-log regression that explains 64% of the observed variation. Winter nest counts are best treated as an approximate index and should not be used when precise, quantitative lemming density estimates are required. Nest counts also can be used to provide general information about habitat-use in winter, predation rates by weasels, and the extent of winter breeding.
Resumo:
During the late Pliocene (~3 to 2.5 Ma), oceanic records of opal and C37 alkenone accumulation from around the world show a secular shift towards lower values in the high latitudes and higher values in the low and mid latitudes. These shifts are broadly coincident with the intensification of northern hemisphere glaciation and are suggestive of changes in export productivity, with potential implications for Pliocene atmospheric carbon dioxide concentrations. The interpretation of a global latitudinal shift in productivity, however, requires testing because of the potential uncertainties associated with site to site comparisons of records that can be influenced by highly nonlinear processes associated with production, export, and preservation. Here, we assess the inferred Pliocene latitudinal productivity shift interpretation by presenting new records of C37 alkenone accumulation from Ocean Drilling Program (ODP) Site 982 in the North Atlantic and biotic assemblages (calcareous nannoplankton) from this site and ODP Site 846 in the eastern tropical Pacific. Our results corroborate the interpretation of C37 alkenone accumulation as a proxy for gross export productivity at these sites, indicating that large-scale productivity decreases at high latitudes and increases at tropical sites are recorded robustly. We conclude that the intensification of northern hemisphere glaciation during the late Pliocene was associated with a profound reorganisation of ocean biogeochemistry.
Resumo:
Stable isotope ratios from tree rings and peatland mosses have become important proxies of past climate variations. We here compare recent stable carbon and oxygen isotope ratios in cellulose of tree rings from white spruce (Picea glauca), growing near the arctic tree line; and cellulose of Sphagnum fuscum stems, growing in a hummock of a subarctic peatland, in west-central Canada. Results show that carbon isotopes in S. fuscum correlate significantly with July temperatures over the past ~20 yr. The oxygen isotopes correlate with both summer temperature and precipitation. Analyses of the tree-ring isotopes revealed summer temperatures to be the main controlling factor for carbon isotope variations, whereas tree-ring oxygen isotope ratios are controlled by a combination of spring temperatures and precipitation totals. We also explore the potential of combining high-frequency (annual) climate signals derived from long tree-ring series with low-frequency (decadal to centennial) climate signals derived from the moss remains in peat deposits. This cross-archive comparison revealed no association between the oxygen isotopes, which likely results from the varying sensitivity of the archives to different seasons. For the carbon isotopes, common variance could be achieved through adjustments of the Sphagnum age model within dating error.
Resumo:
Total organic carbon, total inorganic carbon, biogenic silica content and total organic carbon/total nitrogen ratios of the Laguna Potrok Aike lacustrine sediment record are used to reconstruct the environmental history of south-east Patagonia during the past 51 ka in high resolution. High lake level conditions are assumed to have prevailed during the Last Glacial, as sediments are carbonate-free. Increased runoff linked to permafrost and reduced evaporation due to colder temperatures and reduced influence of Southern Hemispheric Westerlies (SHW) may have caused these high lake levels with lake productivity being low and organic matter mainly of algal or cyanobacterial origin. Aquatic moss growth and diatom blooms occurred synchronously with southern hemispheric glacial warming events such as the Antarctic A-events, the postglacial warming following the LGM and the Younger Dryas chronozone. During these times, a combination of warmer climatic conditions with related thawing permafrost could have increased the allochthonous input of nutrients and in combination with warmer surface waters increased aquatic moss growth and diatom production. The SHW were not observed to affect southern Patagonia during the Last Glacial. The Holocene presents a completely different lacustrine system because (a) permafrost no longer inhibits infiltration nor emits meltwater pulses and (b) the positioning of the SHW over the investigated area gives rise to strong and dry winds. Under these conditions total organic carbon, total organic carbon/total nitrogen ratios and biogenic silica cease to be first order productivity indicators. On the one hand, the biogenic silica is influenced by dissolution of diatoms due to higher salinity and pH of the lake water under evaporative stress characterizing low lake levels. On the other hand, total organic carbon and total organic carbon/total nitrogen profiles are influenced by reworked macrophytes from freshly exposed lake level terraces during lowstands. Total inorganic carbon remains the most reliable proxy for climatic variations during the Holocene as high precipitation of carbonates can be linked to low lake levels and high autochthonous production. The onset of inorganic carbon precipitation has been associated with the southward shift of the SHW over the latitudes of Laguna Potrok Aike. The refined age-depth model of this record suggests that this shift occurred around 9.4 cal. ka BP.
Resumo:
This collection contains measurements of vegetation and soil surface cover measured on the plots of the different sub-experiments at the field site of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. The following series of datasets are contained in this collection: 1. Measurements of vegetation cover, i.e. the proportion of soil surface area that is covered by different categories of plants per estimated plot area. Data was collected on the plant community level (sown plant community, weed plant community, dead plant material, and bare ground) and on the level of individual plant species in case of the species that have been sown into the plots to create the gradient of plant diversity.
Resumo:
A palynological study of a 15 m sediment core from the centre of Lake Wollingst (water depth 14,5 m) is presented. The pollen record shows 3 lateglacial thermomers, called Meiendorf, Bölling, Alleröd and the early holocene Friesland-Thermomer. The succession of forest vegetation taking place on the lake surroundings during the Holocene was typical for older moraine soils which are poor in nutrients: forest vegetation started with birch and pine, followed by hazel, oak and elm in the Boreal and by alder, lime and ash-tree in the Atlantic. Beech and hornbeam reached the area during Subboreal. However, due to the poor soils they spread out only after the Iron Age. With the deforestation during the medieval time the lake lost its character of a primeval forest lake. Lake Wollingst was oligotrophic since its origin at the end of the Pleniglacial. After medieval forest-clearing the lake has changed its quality of water particularly in connection with hemp- and flax-rotting. The modem sediments in this profile are completely disturbed. They contain reworked material, a lot of blue-green algae and remains of Bosmina longirostris indicating eutrophic conditions.