107 resultados para Estuarine Living Marine Resources Program (U.S.)
Resumo:
The increasing pCO2 in seawater is a serious threat for marine calcifiers and alters the biogeochemistry of the ocean. Therefore, the reconstruction of past-seawater properties and their impact on marine ecosystems is an important way to investigate the underlying mechanisms and to better constrain the effects of possible changes in the future ocean. Cold-water coral (CWC) ecosystems are biodiversity hotspots. Living close to aragonite undersaturation, these corals serve as living laboratories as well as archives to reconstruct the boundary conditions of their calcification under the carbonate system of the ocean. We investigated the reef-building CWC Lophelia pertusa as a recorder of intermediate ocean seawater pH. This species-specific field calibration is based on a unique sample set of live in situ collected L. pertusa and corresponding seawater samples. These data demonstrate that uranium speciation and skeletal incorporation for azooxanthellate scleractinian CWCs is pH dependent and can be reconstructed with an uncertainty of ±0.15. Our Lophelia U / Ca-pH calibration appears to be controlled by the high pH values and thus highlighting the need for future coral and seawater sampling to refine this relationship. However, this study recommends L. pertusa as a new archive for the reconstruction of intermediate water mass pH and hence may help to constrain tipping points for ecosystem dynamics and evolutionary characteristics in a changing ocean.
Resumo:
This paper presents new major and trace-element data and Lu-Hf and Sm-Nd isotopic compositions for representative suites of marine sediment samples from 14 drill sites outboard of the world's major subduction zones. These suites and samples were chosen to represent the global range in lithology, Lu/Hf ratios, and sediment flux in subducting sediments worldwide. The data reported here represent the most comprehensive data set on subducting sediments and define the Hf-Nd isotopic variations that occur in oceanic sediments and constrain the processes that caused them. Using new marine sediment data presented here, in conjunction with published data, we derive a new Terrestrial Array given by the equation, epsilon-Hf = 1.55 * epsiolon-Nd + 1.21. This array was calculated using >3400 present-day Hf and Nd isotope values. The steeper slope and smaller y-intercept of this array, compared to the original expression (epsilon-Hf = 1.36 * epsilonNd + 2.89; Vervoort et al., 1999, doi:10.1016/S0012-821X(99)00047-3) reflects the use of present day values and the unradiogenic Hf of old continental samples included in the array. In order to examine the Hf-Nd isotopic variations in marine sediments, we have classified our samples into 5 groups based on lithology and major and trace-element geochemical compositions: turbidites, terrigenous clays, and volcaniclastic, hydrothermal and hydrogenetic sediments. Compositions along the Terrestrial Array are largely controlled by terrigenous material derived from the continents and delivered to the ocean basins via turbidites, volcaniclastic sediments, and volcanic inputs from magmatic arcs. Compositions below the Terrestrial Array derive from unradiogenic Hf in zircon-rich turbidites. The anomalous compositions above the Terrestrial Array largely reflect the decoupled behavior of Hf and Nd during continental weathering and delivery to the ocean. Both terrigenous and hydrogenetic clays possess anomalously radiogenic Hf, reflecting terrestrial sedimentary and weathering processes on the one hand and marine inheritance on the other. This probably occurs during complementary processes involving preferential retention of unradiogenic Hf on the continents in the form of zircon and release of radiogenic Hf from the breakdown of easily weathered, high Lu-Hf phases such as apatite.