858 resultados para EOCENE
Resumo:
Analysis of sediments deposited at different latitudes around the world during the Palaeocene-Eocene Thermal Maximum (PETM; ~56 Ma) have revealed a globally profound warming phase, regionally varying from 5-8 °C. Such records from Europe have not yet been obtained. We studied the variations in sea surface and continental mean annual air temperatures (SST and MAT, respectively) and the distribution patterns and stable carbon isotopes of higher plant derived n-alkanes in two proximal PETM sections (Fur and Store Bælt, Denmark) from the epicontinental North Sea Basin. A negative carbon isotope excursion (CIE) of 4-7 per mil was recorded in land plant derived n-alkanes, similar to what has been observed for other PETM sections. However, differences observed between the two proximal sites suggest that local factors, such as regional vegetation and precipitation patterns, also influenced the CIE. The presence of S-bound isorenieratene derivatives at the onset of the PETM and increased organic carbon contents points to a rapid shift in depositional environment; from well oxygenated to anoxic and sulfidic. These euxinic conditions are comparable with those during the PETM in the Arctic Ocean. SSTs inferred from TEX86 show relatively low temperatures followed by an increase of ~7 °C across the PETM. At the Fur section, a remarkably similar temperature record was obtained for MAT using the MBT'/CBT proxy. However, the MAT record of the Store Bælt section did not reveal this warming.
Resumo:
Major ice sheets were permanently established on Antarctica approximately 34 million years ago, close to the Eocene/ Oligocene boundary, at the same time as a permanent deepening of the calcite compensation depth in the world's oceans. Until recently, it was thought that Northern Hemisphere glaciation began much later, between 11 and 5million years ago. This view has been challenged, however, by records of ice rafting at high northern latitudes during the Eocene epoch and by estimates of global ice volume that exceed the storage capacity of Antarctica at the same time as a temporary deepening of the calcite compensation depth 41.6 million years ago. Here we test the hypothesis that large ice sheets were present in both hemispheres 41.6 million years ago using marine sediment records of oxygen and carbon isotope values and of calcium carbonate content from the equatorial Atlantic Ocean. These records allow, at most, an ice budget that can easily be accommodated on Antarctica, indicating that large ice sheets were not present in the Northern Hemisphere. The records also reveal a brief interval shortly before the temporary deepening of the calcite compensation depth during which the calcite compensation depth shoaled, ocean temperatures increased and carbon isotope values decreased in the equatorial Atlantic. The nature of these changes around 41.6 million years ago implies common links, in terms of carbon cycling, with events at the Eocene/Oligocene boundary and with the 'hyperthermals' of the Early Eocene climate optimum. Our findings help to resolve the apparent discrepancy between the geological records of Northern Hemisphere glaciation and model results that indicate that the threshold for continental glaciation was crossed earlier in the Southern Hemisphere than in the Northern Hemisphere.
Resumo:
Paleogene calcareous nannofossils from split spoon cores recovered from five wells along the Coastal Plain of New Jersey and Maryland have been analyzed in order to provide onshore information complementary to that derived from the offshore DSDP Site 605 (upper continental rise off New Jersey). Hiatuses are more numerous and of greater extent in the onshore sections, but the major ones correlate well with those noted in the offshore section. At one site at least (Leggett Well), sedimentation may well have been continuous across the Cretaceous/Tertiary boundary, as it is believed to have been at DSDP Site 605. These various correlations are discussed elsewhere in a companion paper (Olsson and Wise, this volume). Important differences in nannofossil assemblages are noted between the onshore (shelf paleoenvironment) and offshore (slope-rise paleoenvironment) sections. Lithostromation simplex, not present offshore, is consistently present onshore and seems to be confined to the Eocene shelf sediments of this region. The same relationship holds for the zonal marker, Rhabdosphaera gladius Locker. The Rhomboaster-Tribrachiatus plexus is more diverse and better preserved in the onshore sections, where the lowermost Eocene Zone CP9 is well represented. Differential preservation is postulated to account for two morphotypes of Tribrachiatus bramlettei (Brönnimann and Stradner). Type A is represented at DSDP Site 605 by individuals with short, stubby arms, but these forms are not present in the equivalent onshore sections. There they are replaced by the Type B morphotypes, which exhibit a similar basic construction but possess much longer, more delicate arms.
Resumo:
Benthic foraminiferal biofacies may vary independently of water depth and water mass; however, calibration of biofacies and stratigraphic ranges with independent paleodepth estimates allows reconstruction of age-depth patterns applicable throughout the deep Atlantic (Tjalsma and Lohmann, 1983). We have attempted to test these faunal calibrations in a continental margin setting, reconstructing Eocene benthic foraminiferal distributions along a dip section afforded by the New Jersey Transect (DSDP Sites 612, 108, 613). The following independent estimates of Eocene depths for the transect were obtained by "backtracking," "backstripping," and by assuming increasing depth downdip ("paleoslope"): Site 612, near the middle/lower bathyal boundary (about 1000 m); Site 108, in the middle bathyal zone (about 1600 m); and Site 613, near the lower bathyal/upper abyssal boundary (about 2000 m). Within uncertainties of backtracking (hundreds of meters), these estimates agree with estimates of paleodepth based on comparison of the New Jersey margin biofacies with other backtracked faunas. The stratigraphic ranges of many benthic taxa correspond to those found at other Atlantic DSDP sites. The major biofacies patterns show: (1) a depth dichotomy between an early to middle Eocene Nuttallides truempyidominated biofacies (greater than 2000 m) and a Lenticulina-Osangularia-Alabamina cf. dissonata biofacies (1000- 2000 m); and (2) a difference between a middle and a late Eocene biofacies at Site 612. The faunal boundary at about 2000 m, between bathyal and abyssal zones, occurs not only on the margin, but also throughout the deep Atlantic. The faunal change between the middle and late Eocene at Site 612 was due to a decrease of Lenticulina spp., the local disappearance of N. truempyi, and establishment of a Bulimina alazanensis-Gyroidinoides spp. biofacies. Although this change could be attributed to local paleoceanographic or water-depth changes, we argue that it is the bathyal expression of a global deep-sea benthic foraminiferal change which occurred across the middle/late Eocene boundary.
Resumo:
A major deterioration in global climate occurred through the Eocene-Oligocene time interval, characterized by long-term cooling in both terrestrial and marine environments. During this long-term cooling trend, however, recent studies have documented several short-lived warming and cooling phases. In order to further investigate high-latitude climate during these events, we developed a high-resolution calcareous nannofossil record from ODP Site 748 Hole B for the interval spanning the late middle Eocene to the late Oligocene (~42 to 26 Ma). The primary goals of this study were to construct a detailed biostratigraphic record and to use nannofossil assemblage variations to interpret short-term changes in surface-water temperature and nutrient conditions. The principal nannofossil assemblage variations are identified using a temperate-warm-water taxa index (Twwt), from which three warming and five cooling events are identified within the middle Eocene to the earliest Oligocene interval. Among these climatic trends, the cooling event at ~39 Ma (Cooling Event B) is recorded here for the first time. Variations in fine-fraction d18O values at Site 748 are associated with changes in the Twwt index, supporting the idea that significant short-term variability in surface-water conditions occurred in the Kerguelen Plateau area during the middle and late Eocene. Furthermore, ODP Site 748 calcareous nannofossil paleoecology confirms the utility of these microfossils for biostratigraphic, paleoclimatic, and paleoceanographic reconstructions at Southern Ocean sites during the Paleogene.
Resumo:
The clay mineral assemblages of upper Eocene to lower Miocene sediments recovered at the CIROS-1 and MSSTS-1 drill sites on the McMurdo Sound shelf, Antarctica, were analyzed in order to reconstruct the Cenozoic Antarctic paleoclimate and ice dynamics. The assemblages are dominated by smectite and illite, with minor amounts of chlorite and kaolinite. The highest smectite amounts and best smectite crystallinities occur in the upper Eocene part of CIROS-1, below 425-445 mbsf. They indicate that during their deposition, chemical weathering conditions prevailed on the nearby continent. Large parts of East Antarctica were probably ice-free at that time, but some glaciers reached the sea and contributed to the glaciomarine sedimentation. In contrast, only minor total amounts of smectite are present in Oligocene and younger sediments due to the shift to mainly physical weathering on an ice-covered Antarctic continent. However, relative smectite percentages rise to more than 60% during two late Oligocene intervals (ca. 27.5-26.2 and 25.0-24.5 Ma) and during one early Miocene interval starting at ca. 23.3 Ma. These intervals are characterized by ice masses coming probably from the south, where volcanic rocks acted as a source, as also indicated by the composition of the sand and gravel fractions. During the other intervals, the ice came from the west, where the physical erosion of basement rocks and sedimentary rocks of the Beacon Supergroup in the Transantarctic Mountains provided high illite concentrations. Because the two drill sites are only 4 km apart, their clay mineral records can be correlated. This led to a new interpretation of the Oligocene paleomagnetic data of the MSSTS-1 site and to a more detailed lithostratigraphic correlation of the Miocene parts of the cores.
Resumo:
Size measurements of the calcareous nannofossil taxon Discoaster multiradiatus were carried out across the Paleocene-Eocene Thermal Maximum (PETM) in Ocean Drilling Program Holes 690B (Maud Rise, Weddell Sea) and 1209B (Shatsky Rise, Pacific Ocean). Morphometric investigations show that D. multiradiatus specimens are generally larger at ODP Site 1209 than at ODP Site 690. A limited increase in size of D. multiradiatus is recorded at ODP Site 1209, whereas significant enlargements characterize ODP Site 690. Preservation is comparable at both sites: nannofossils are moderately preserved with some evidence of etching/overgrowth in the PETM interval. Yet, D. multiradiatus variations do not correlate with preservation state and morphometric data most likely represent primary signals rather than diagenetic artifacts. There is a direct relationship between D. multiradiatus size and paleotemperatures: largest specimens are coeval with global warming associated with the PETM, inferred to result from excess atmospheric CO2 due to (partial) oxidation of massive quantities of methane. Size increases and largest specimens of D. multiradiatus occur at different stratigraphic levels within PETM at ODP Sites 690 and 1209. A marked shift in diameter size was observed at the onset and peak of the Carbon Isotopic Excursion (CIE) at ODP Site 690, but only at the end of CIE and initial recovery interval at ODP Site 1209. This diachroneity is puzzling, but indeed correlates well with reconstructed changes in surface and thermocline water masses temperature and salinity in the PETM interval at low and high latitudes. The presumed high concentrations of carbon dioxide seem to have not influenced the morphometry of D. multiradiatus. The major size increase of D. multiradiatus in the CIE of ODP Site 690 could represent the migration of larger-sized allochtonus specimens that moved from peri-equatorial/subtropical areas to higher latitudes during the warmest interval of the PETM, although no direct evidence of distinct populations/subpopulations has been obtained from the frequency diagrams. As a result, we infer that D. multiradiatus is a proxy of water masses stratification and might be used for deriving temperature-salinity-nutrient conditions in the mixed layer and thermocline and their dynamics.
Resumo:
Eocene through Quaternary planktonic foraminifers were identified in cores recovered during Leg 126. Turbidites and volcanic ash beds are intercalated with hemipelagic sediments. Preservation of foraminifers is variable, ranging from excellent to poor and appears to have been affected by fluctuations in the carbonate compensation depth (CCD), depth of burial, changes in bottom water temperature, current velocity, sediment accumulation rates and seafloor topography. Preservation of foraminifers in Quaternary sediments is generally good, however, species abundance varies by a factor of I05-106 and reflects dilution by volcanogenic as well as terrigenous constituents and cannot be used for paleoceanographic reconstructions. In pre-Quaternary deposits planktonic foraminiferal tests frequently exhibit dissolution effects; biostratigraphic zonation and placement of zonal boundaries is difficult owing to hiatuses, dissolution facies, extraneously deposited sediments, and discontinuous coring. The Eocene foraminiferal faunas include specimens of the Globorotalia cerroazulensis plexus, markers of Zone P16 as well as Globigerina senni and Globigerinatheka spp., which became extinct before the end of the Eocene. Six hiatuses and/or dissolution periods, probably reflecting global cooling events and/or changes in oceanic circulation patterns were recorded at Site 792. Recrystallized, poorly preserved, possibly reworked Eocene species (Globigerina senni and Globigerapsis sp.) were recorded in sediments at Site 793.
Resumo:
The Middle Eocene diatom and silicoflagellate record of ODP Site 1260A (Demerara Rise) is studied quantitatively in order to throw light on the changes that siliceous phytoplankton communities experienced during a Middle Eocene warming event that occurred between 44.0 and 42.0 Ma. Both Pianka's overlap index, calculated per couple of successive samples, and cluster analysis, point to a number of significant turnover events highlighted by changes in the structure of floristic communities. The pre-warming flora, dominated by cosmopolitan species of the diatom genus Triceratium, is replaced during the warming interval by a new and more diverse assemblage, dominated by Paralia sulcata (an indicator of high productivity) and two endemic tropical species of the genus Hemiaulus. The critical warming interval is characterized by a steady increase in biogenic silica and a comparable increase in excess Ba, both reflecting an increase in productivity. In general, it appears that high productivity not only increased the flux of biogenic silica, but also sustained a higher diversity in the siliceous phytoplankton communities. The microflora preserved above the critical interval is once again of low diversity and dominated by various species of the diatom genus Hemiaulus. All assemblages in the studied material are characterized by the total absence of continental and benthic diatoms and the relative abundance of neritic forms, suggesting a transitional depositional environment between the neritic and the oceanic realms.
Resumo:
This work presents the stratigraphic distribution of several species of calcareous nannofossil in the middle Eocene early-Oligocene from four Ocean Drilling Program (ODP) sites located between 60° and 65°S paleolatitude in the Southern Atlantic and Indian Oceans. Useful nannofossil datums that should facilitate construction of age-models and contribute to an integrated chronology for the upper Paleogene Southern Ocean sediments from ~42 to 33 Ma are summarized. The distribution patterns of calcareous nannofossils, studied by means of quantitative and semiquantitative methods, provide an improvement of the classical Southern Ocean biozonations, introducing new biostratigraphically useful biohorizons, and testing their reproducibility within and outside the region.
Resumo:
The Paleocene-Eocene thermal maximum (PETM) has been attributed to the rapid release of ~2000 * 10**9 metric tons of carbon in the form of methane. In theory, oxidation and ocean absorption of this carbon should have lowerd deep-sea pH, thereby triggering a rapid (<10,000-year) shoaling of the calcite compensation depth (CCD), followed by gradual recovery. Here we present geochemical data from five new South Atlantic deep-sea sections that constrain the timing and extent of massive sea-floor carbonate dissolution coincident with the PETM. The sections, from between 2.7 and 4.8 kilometers water depth, are marked by a prominent clay layer, the character of which indicates that the CCD shoaled rapidly (<10,000 years) by more than 2 kilometers and recovered gradually (>100,000 years). These findings indicate that a large mass of carbon (>>2000 * 10**9 metric tons of carbon) dissolved in the ocean at the Paleocene-Eocene boundary and that permanent sequestration of this carbon occurred through silicate weathering feedback.