985 resultados para Beryllium 10, standard deviation
Resumo:
The 10Be records of four sediment cores forming a transect from the Norwegian Sea at 70°N (core 23059) via the Fram Strait (core 23235) to the Arctic Ocean at 86°N (cores 1533 and 1524) were measured at a high depth resolution. Although the material in all the cores was controlled by different sedimentological regimes, the 10Be records of these cores were superimposed by glacial/interglacial changes in the sedimentary environment. Core sections with high 10Be concentrations ( >1 * 10**9 at/g) are related to interglacial stages and core sections with low10Be concentrations ( <0.5 * 10**9 at/g) are related to glacial stages. Climatic transitions (e.g., Termination II, 5/6) are marked by drastic changes in the 10Be concentrations of up to one order of magnitude. The average 10Be concentrations for each climatic stage show an inverse relationship to their corresponding sedimentation rates, indicating that the 10Be records are the result of dilution with more or less terrigenous ice-rafted material. However, there are strong changes in the 10Be fluxes (e.g., Termination II) into the sediments which may also account for the observed oscillations. Most likely, both processes affected the 10Be records equally, amplifying the contrast between lower (glacials) and higher (interglacials) 10Be concentrations. The sharp contrast of high and low 10Be concentrations at climatic stage boundaries are an independent proxy for climatic and sedimentary change in the Nordic Seas and can be applied for stratigraphic dating (10Be stratigraphy) of sediment cores from the northern North Atlantic and the Arctic Ocean.
Resumo:
The McMurdo Dry Valleys, Antarctica (MDV) are among the oldest landscapes on Earth, and some landforms there present an intriguing apparent contradiction such that millions of years old surface deposits maintain their meter-scale morphology despite the fact that measured erosion rates are 0.1-4 m/Ma. We analyzed the concentration of cosmic ray-produced 10Be and 26Al in quartz sands from regolith directly above and below two well-documented ash deposits in the MDV, the Arena Valley ash (40Ar/39Ar age of 4.33 Ma) and the Hart ash (K-Ar age of 3.9 Ma). Measured concentrations of 10Be and 26Al are significantly less than expected given the age of the in situ air fall ashes and are best interpreted as reflecting the degradation rate of the overlying sediments. The erosion rate of the material above the Arena Valley ash that best explains the observed isotope profiles is 3.5 ± 0.41 x 10**-5 g/cm**2/yr (~0.19 m/Ma) for the past ~4 Ma. For the Hart ash, the erosion rate is 4.8 ± 0.21 x 10**-4 g/cm**2/yr (~2.6 m/Ma) for the past ~1 Ma. The concentration profiles do not show signs of mixing, creep, or deflation caused by sublimation of ground ice. These results indicate that the slow, steady lowering of the surface without vertical mixing may allow landforms to maintain their meter-scale morphology even though they are actively eroding.
Resumo:
This study centers on the question: How sensitive are 231Pa/230Th and 10Be/230Th to sediment composition and redistribution? The natural radionuclides 231Pa, 230Th and 10Be recorded in deep sea sediments are tracers for water mass advection and particle fluxes. We investigate the influence of oceanic particle composition on the element adsorption in order to improve our understanding of sedimentary isotope records. We present new data on particle size specific 231Pa and 10Be concentrations. An additional separation step, based on settling velocities, led to the isolation of a very opal-rich phase. We find that opal-rich particles contain the highest 231Pa and 10Be concentrations, and higher 231Pa/230Th and 10Be/230Th isotope ratios than opal-poor particles. The fractionation relative to 230Th induced by the adsorption to opal-rich particles is more pronounced for 231Pa than for 10Be. We conclude that bulk 231Pa/230Th in Southern Ocean sediments is most suitable as a proxy for past opal fluxes. The comparison between two neighboring cores with rapid and slow accumulation rates reveals that these isotope ratios are not influenced significantly by the intensity of sediment focusing at these two study sites. However, a simulation shows that particle sorting by selective removal of sediment (winnowing) could change the isotope ratios. Consequently, 231Pa/230Th should not be used as paleocirculation proxy in cases where a strong loss of opal-rich material due to bottom currents occurred.
Resumo:
Hydrogenetic ferromanganese crusts were dredged from four seamounts in the western Pacific, OSM7, OSM2, Lomilik, and Lemkein, aligned in a NW-SE direction parallel to Pacific Plate movement. The crusts consist of four well-defined layers with distinct textural and geochemical properties. The topmost layer 1 is relatively enriched in Mn, Co, Ni, and Mo compared to the underlying layer 2, which is relatively enriched in Al, Ti, K, and Rb and Cu, Zn, and excess Ba. Textural and geochemical properties of layer 2 suggest growth conditions under high biogenic and detrital flux. Such conditions are met in the equatorial Pacific (i.e., between the Intertropical Convergence Zone (ITCZ) and equatorial high-productivity zone). Layer 2 likely formed when each seamount was beneath the equatorial Pacific along its back track path. On the other hand, layer 1 probably started to grow after seamounts moved northwest from the ITCZ. This interpretation is consistent with the thickness of layer 1 across the four crusts, which increases to the northwest. Ages of the layer 1-layer 2 boundary in each crust, a potential proxy for northern margin of the ITCZ, also increase to the northwest at 17, 11, 8, and 5 Ma for OSM7, OSM2, Lomilik, and Lemkein, respectively. Assuming Pacific Plate motion of 0.3°/Myr, the seamounts were located at 12°N, 11°N, 9°N, and 8°N at the time of boundary formation. This result suggests that the north edge of the ITCZ has shifted south since the middle Miocene in the western Pacific, which agrees with information from the eastern Pacific.
Resumo:
A high-resolution multiparameter stratigraphy allows the identification of late Quaternary glacial and interglacial cycles in a central Arctic Ocean sediment core. Distinct sandy layers in the upper part of the otherwise fine-grained sediment core from the Lomonosov Ridge (lat 87.5°N) correlate to four major glacials since ca. 0.7 Ma. The composition of these ice-rafted terrigenous sediments points to a glaciated northern Siberia as the main source. In contrast, lithic carbonates derived from North America are also present in older sediments and indicate a northern North American glaciation since at least 2.8 Ma. We conclude that large-scale northern Siberian glaciation began much later than other Northern Hemisphere ice sheets.
Resumo:
The upper 200 m of the sediments recovered during IODP Leg 302, the Arctic Coring Expedition (ACEX), to the Lomonosov Ridge in the central Arctic Ocean consist almost exclusively of detrital material. The scarcity of biostratigraphic markers severely complicates the establishment of a reliable chronostratigraphic framework for these sediments, which contain the first continuous record of the Neogene environmental and climatic evolution of the Arctic region. Here we present profiles of cosmogenic 10Be together with the seawater-derived fraction of stable 9Be obtained from the ACEX cores. The down-core decrease of 10Be/9Be provides an average sedimentation rate of 14.5 ± 1 m/Ma for the uppermost 151 m of the ACEX record and allows the establishment of a chronostratigraphy for the past 12.3 Ma. The age corrected 10Be concentrations and 10Be/9Be ratios suggest the existence of an essentially continuous sea ice cover over the past 12.3 Ma.
Resumo:
High resolution 230Thex and 10Be and biogenic barium profiles were measured at three sediment gravity cores (length 605-850 cm) from the Weddell Sea continental margin. Applying the 230Thex dating method, average sedimentation rates of 3 cm/kyr for the two cores from the South Orkney Slope and of 2.4 cm/kyr for the core from the eastern Weddell Sea were determined and compared to delta18O and lithostratigraphic results. Strong variations in the radionuclide concentrations in the sediments resembling the glacial/interglacial pattern of the delta18O stratigraphy and the 10Be stratigraphy of high northern latitudes were used for establishing a chronostratigraphy. Biogenic Ba shows a pattern similar to the radionuclide profiles, suggesting that both records were influenced by increased paleoproductivity at the beginning of the interglacials. However, 230Thex0 fluxes (0 stands for initial) exceeding production by up to a factor of 4 suggest that sediment redistribution processes, linked to variations in bottom water current velocity, played the major role in controlling the radionuclide and biogenic barium deposition during isotope stages 5e and 1. The correction for sediment focusing makes the 'true' vertical paleoproductivity rates, deduced from the fluxes of proxy tracers like biogenic barium, much lower than previously estimated. Very low 230Thex0 concentrations and fluxes during isotope stage 6 were probably caused by rapid deposition of older, resedimented material, delivered to the Weddell Sea continental slopes by the grounded ice shelves and contemporaneous erosion of particles originating from the water column.
Resumo:
In this thesis it is shown that the cosmogenic radionuclide 10Be proved to be a sensitive stratigraphic tool for sediment cores from the Arctic Ocean with low or negligible content of biogenic carbonate, impeding a reliable 0180 stratigraphy. 10Be enables a stratigraphy of Arctic sediments comparable to the d18O stratigraphy Imbrie et al. [1984] in that high concentration of 10Be are related to interglacial stages in contrast to lower values during glacial periods. To use the °Be profile as dating tool it is necessary to investigate the sources and sinks as well as the pathways of this radiotracer. 10Be is produced in the upper atmosphere and transfered to the earth's surface by dry and wet deposition. Besides the atmospheric component there is an important input of 10Be with the rivers to the Arctic Ocean. I determined depositional 10Be fluxes in the shelf area of the Laptev Sea, which is characterized by a huge input of river water, the continental slope of the Laptev Sea, the central Arctic Ocean and the Norwegian- and Greenland Sea. The depositional 10Be fluxes of (20 ± 5) x 10**6 atoms/cm**2/a in the shelf area of the Laptev Sea are by two orders of magnitude higher than the recent atmospheric input (0.2 - 0.5) x 10**6 atoms/cm**2/a in Greenland. while the fluxes in the central Arctic Ocean are in the same range. Further I developed a model to reconstruct the pathways of radionuclides 230Th, 231Pa and 10Be in high northern latitudes. The modelling results were compared with the measured concentrations in the water column and the recent depositional fluxes. These results show that the recent pathways of these nuclides can be rebuild by this model. Thus we can apply this model to earlier oxygen isotope stages to find out which predominate conditions lead to the determined depositional fluxes.