797 resultados para Appendicularia, fecal pellet carbon flux


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Size-, species- and age composition of zooplankton was studied in the ice-covered Chupa Inlet (White Sea, Kandalksha Bay) in early April 2002. The species composition of zooplankton was poor and typical for the end of the winter season, and abundance and biomass were considerably lower than in summer. In terms of biomass two species of copepods (Calanus glacialis and Pseudocalanus minutus) prevailed. Both species were already feeding on ice algae available and began to reproduce. Such early reproduction of Calanus glacialis was noted in the White Sea for the first time. Obtained results show that secondary production in the White Sea starts well before thawing of the ice cover.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seventeen surface sediment samples from the North Atlantic Ocean off NE-Greenland between 76° and 81°N, and nine samples from the South Atlantic Ocean close to Bouvet Island between 48° and 55°S were taken with the aid of a Multiple Corer and investigated for their live (Rose Bengal stained) benthic foraminiferal content within the upper 15 cm of sediment. Preferentially endobenthic Melonis barleeanum, Melonis zaandami, and Bulimina aculeata as well as preferentially epibenthic Lobatula lobatula were counted from 1-cm-thick sediment slices each and analyzed for stable carbon and oxygen isotopic compositions of their calcareous tests. Live and dead specimens were counted and measured separately. The carbon isotopic composition of the foraminifera was compared to that of the dissolved inorganic carbon (DIC) of simultaneously sampled bottom water. During a period of one month, one station off NE-Greenland was replicately sampled once every week and samples were processed as above. Live specimens of Lobatula lobatula are confined to the uppermost two centimeters of sediment. Live specimens of Melonis spp. are found down to 8 cm within the sediment but with a distinct sub-surface maximum between 2 and 5 cm. The down-core distribution of live Bulimina aculeata shows a distinct surface maximum in the top centimeter and constant but low numbers down to 11-cm subbottom depth. The average stable carbon isotopic composition (d13C versus per mil PDB) of live Lobatula lobatula off NE-Greenland is by 0.4±0.1 per mil higher than the d13CDIC of the ambient bottom water at the time of sampling. There is evidence that this species calcify before the ice-free season, when bottom water d13CDIC is supposed to be higher. This would reconfirm the one-to-one relationship between d13C of ambient water DIC and cibicids, widely used by paleoceanographers. Live Melonis barleeanum show a negative offset from bottom water DIC of -1.7±0.6 per mil in the uppermost sediment and of -2.2±0.5 per mil in 3-4-cm subbottom depth. All d13C values of live Melonis spp. decrease within the upper four centimeters, regardless of the time of sampling and site investigated. The offset of live Bulimina aculeata from bottom water d13CDIC values of 8 stations rather constantly amounts to -0.6±0.1 per mil, no matter what subbottom depth the specimens are from. At one station however, where is strong indication of elevated organic carbon flux, the negative offset averaged over all sub-bottom depths increases to -1.5±0.2 per mil. Buliminids actively move within the sediment and by this either record an average isotope signal of the pore water or the signal of one specific calcification depth. The recorded signal, however, depends on the organic carbon flux and reflects general but site-specific pore water d13CDIC values. If compared with epibenthic d13C values from the same site, not influenced by pore water and related phytodetritus layer effects, Buliminad13C values bear some potential as a paleoproductivity proxy. Specimens of Melonis spp. seem to prefer a more static way of life and calcify at different but individually fix depths within the sediment. Although live specimens thus record a stratified pore water d13C signal, there is no means yet to correct for bioturbational and early diagenetic effects in fossil faunas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The flux of materials to the deep sea is dominated by larger, organic-rich particles with sinking rates varying between a few meters and several hundred meters per day. Mineral ballast may regulate the transfer of organic matter and other components by determining the sinking rates, e.g. via particle density. We calculated particle sinking rates from mass flux patterns and alkenone measurements applying the results of sediment trap experiments from the Atlantic Ocean. We have indication for higher particle sinking rates in carbonate-dominated production systems when considering both regional and seasonal data. During a summer coccolithophorid bloom in the Cape Blanc coastal upwelling off Mauritania, particle sinking rates reached almost 570 m per day, most probably due the fast sedimentation of densely packed zooplankton fecal pellets, which transport high amounts of organic carbon associated with coccoliths to the deep ocean despite rather low production. During the recurring winter-spring blooms off NW Africa and in opal-rich production systems of the Southern Ocean, sinking rates of larger particles, most probably diatom aggregates, showed a tendency to lower values. However, there is no straightforward relationship between carbonate content and particle sinking rates. This could be due to the unknown composition of carbonate and/or the influence of particle size and shape on sinking rates. It also remains noticeable that the highest sinking rates occurred in dust-rich ocean regions off NW Africa, but this issue deserves further detailed field and laboratory investigations. We obtained increasing sinking rates with depth. By using a seven-compartment biogeochemical model, it was shown that the deep ocean organic carbon flux at a mesotrophic sediment trap site off Cape Blanc can be captured fairly well using seasonal variable particle sinking rates. Our model provides a total organic carbon flux of 0.29 Tg per year down to 3000 m off the NW African upwelling region between 5 and 35° N. Simple parameterisations of remineralisation and sinking rates in such models, however, limit their capability in reproducing the flux variation in the water column.