103 resultados para 4-methyl-3-penten-2-one
Resumo:
This study aims to contribute to a more detailed knowledge of the biogeography of coccolithophores in the Equatorial and Southeastern Pacific Ocean. Census data of fossil coccoliths are presented in a suite of core-top sediment samples from 15°N to 50.6°S and from 71°W to 93°W. Following standard preparation of smear slides, a total of 19 taxa are recognized in light microscopy and their relative abundances are determined for 134 surface sediment samples. Considering the multivariate character of oceanic conditions and their effects on phytoplankton, a Factor Analysis was performed and three factors were retained. Factor 1, dominated by Florisphaera profunda and Gephyrocapsa oceanica, includes samples located under warm water masses and indicates the occurrence of calcite dissolution in the water column in the area offshore Chile. Factor 2 is related to cold, low-salinity surface-water masses from the Chilean upwelling, and is dominated by Emiliania huxleyi, Gephyrocapsa sp. < 3 µm, Coccolithus pelagicus and Gephyrocapsa muellerae. Factor 3 is linked to more saline, coastal upwelling areas where Calcidiscus leptoporus and Helicosphaera carteri are the dominant species.
Resumo:
Dinoflagellate cysts and other organic-walled microfossils have been studied in recent surface sediments from the entire Norwegian-Greenland Sea. More than 30 taxa have been recognized, of which only few show a distinct distribution pattern, and allow description of four assemblages. The occurrence of most taxa is related to the relatively warmer waters of the Norwegian Sea. Algidaspaeridium? minutum s.1., Brigantedinium simplex and Impagidinium? pallidum are the only species showing a preference for colder water masses. Two species, I.? pallidum and Nematosphaeropsis labyrinthus are mainly restricted to the oceanic environment, whereas the other species have also been reported from neritic environments in previous studies. Due to the limited knowledge of the ecological and sedimentological factors influencing the occurrence of dinoflagellate cysts in oceanic environments, their distribution in recent sediments can be only related to surface water masses in a broad sense. Although the distribution of assemblages correlates with specific surface water masses, comparison with assemblages recovered from sediment traps deployed basinwide in the Norwegian-Greenland Sea (Dale and Dale, 1992) revealed some major discrepancies in species composition and percentage abundances. The differences cannot be explained with certainty at the moment, although there is some evidence that transport of dinoflagellate cysts and other fossilizable microplankton in water masses by currents, in sea-ice and sediments may modify the assemblages found in recent oceanic surface sediments from the Norwegian-Greenland Sea.
Resumo:
Approaches to quantify the organic carbon accumulation on a global scale generally do not consider the small-scale variability of sedimentary and oceanographic boundary conditions along continental margins. In this study, we present a new approach to regionalize the total organic carbon (TOC) content in surface sediments (<5 cm sediment depth). It is based on a compilation of more than 5500 single measurements from various sources. Global TOC distribution was determined by the application of a combined qualitative and quantitative-geostatistical method. Overall, 33 benthic TOC-based provinces were defined and used to process the global distribution pattern of the TOC content in surface sediments in a 1°x1° grid resolution. Regional dependencies of data points within each single province are expressed by modeled semi-variograms. Measured and estimated TOC values show good correlation, emphasizing the reasonable applicability of the method. The accumulation of organic carbon in marine surface sediments is a key parameter in the control of mineralization processes and the material exchange between the sediment and the ocean water. Our approach will help to improve global budgets of nutrient and carbon cycles.
Resumo:
We present a data set of 738 planktonic foraminiferal species counts from sediment surface samples of the eastern North Atlantic and the South Atlantic between 87°N and 40°S, 35°E and 60°W including published Climate: Long-Range Investigation, Mapping, and Prediction (CLIMAP) data. These species counts are linked to Levitus's [1982] modern water temperature data for the four caloric seasons, four depth ranges (0, 30, 50, and 75 m), and the combined means of those depth ranges. The relation between planktonic foraminiferal assemblages and sea surface temperature (SST) data is estimated using the newly developed SIMMAX technique, which is an acronym for a modern analog technique (MAT) with a similarity index, based on (1) the scalar product of the normalized faunal percentages and (2) a weighting procedure of the modern analog's SSTs according to the inverse geographical distances of the most similar samples. Compared to the classical CLIMAP transfer technique and conventional MAT techniques, SIMMAX provides a more confident reconstruction of paleo-SSTs (correlation coefficient is 0.994 for the caloric winter and 0.993 for caloric summer). The standard deviation of the residuals is 0.90°C for caloric winter and 0.96°C for caloric summer at 0-m water depth. The SST estimates reach optimum stability (standard deviation of the residuals is 0.88°C) at the average 0- to 75-m water depth. Our extensive database provides SST estimates over a range of -1.4 to 27.2°C for caloric winter and 0.4 to 28.6°C for caloric summer, allowing SST estimates which are especially valuable for the high-latitude Atlantic during glacial times.
Resumo:
We compare a compilation of 220 sediment core d13C data from the glacial Atlantic Ocean with three-dimensional ocean circulation simulations including a marine carbon cycle model. The carbon cycle model employs circulation fields which were derived from previous climate simulations. All sediment data have been thoroughly quality controlled, focusing on epibenthic foraminiferal species (such as Cibicidoides wuellerstorfi or Planulina ariminensis) to improve the comparability of model and sediment core carbon isotopes. The model captures the general d13C pattern indicated by present-day water column data and Late Holocene sediment cores but underestimates intermediate and deep water values in the South Atlantic. The best agreement with glacial reconstructions is obtained for a model scenario with an altered freshwater balance in the Southern Ocean that mimics enhanced northward sea ice export and melting away from the zone of sea ice production. This results in a shoaled and weakened North Atlantic Deep Water flow and intensified Antarctic Bottom Water export, hence confirming previous reconstructions from paleoproxy records. Moreover, the modeled abyssal ocean is very cold and very saline, which is in line with other proxy data evidence.
Resumo:
Planktic foraminifers Neogloboquadrina pachyderma (sin.) from 87 eastern and central Arctic Ocean surface sediment samples were analyzed for stable oxygen and carbon isotope composition. Additional results from 52 stations were taken from the literature. The lateral distribution of delta18O (18O/16O) values in the Arctic Ocean reveals a pattern of roughly parallel, W-E stretching zones in the Eurasian Basin, each ~0.5 per mil wide on the delta18O scale. The low horizontal and vertical temperature variability in the Arctic halocline waters (0-100 m) suggests only little influence of temperature on the oxygen isotope distribution of N. pachyderma (sin.). The zone of maximum delta18O values of up to 3.8 per mil is situated in the southern Nansen Basin and relates to the tongue of saline (> 33%.) Atlantic waters entering the Arctic Ocean through the Fram Strait. delta18O values decrease both to the Barents Shelf and to the North Pole, in accordance with the decreasing salinities of the halocline waters. In the Nansen Basin, a strong N-S delta18O gradient is in contrast with a relatively low salinity change and suggests contributions from different freshwater sources, i.e. salinity reduction from sea ice meltwater in the south and from light isotope waters (meteoric precipitation and river-runoff) in the northern part of the basin. North of the Gakkel Ridge, delta18O and salinity gradients are in good accordance and suggest less influence of sea ice melting processes. The delta13C (13C/12C) values of N. pachyderma (sin.) from Arctic Ocean surface sediment samples are generally high (0.75-0.95 per mil). Lower values in the southern Eurasian Basin appear to be related to the intrusion of Atlantic waters. The high delta13C values are evidence for well ventilated surface waters. Because the perennial Arctic sea ice cover largely prevents atmosphere-ocean gas exchange, ventilation on the seasonally open shelves must be of major importance. Lack of delta13C gradients along the main routes of the ice drift from the Siberian shelves to the Fram Strait suggests that primary production (i.e. CO2 consumption) does probably not change the CO2 budget of the Arctic Ocean significantly.
Resumo:
A compilation of 1118 surface sediment samples from the South Atlantic was used to map modern seafloor distribution of organic carbon content in this ocean basin. Using new data on Holocene sedimentation rates, we estimated the annual organic carbon accumulation in the pelagic realm (>3000 m water depth) to be approximately 1.8*10**12 g C/year. In the sediments underlying the divergence zone in the Eastern Equatorial Atlantic (EEA), only small amounts of organic carbon accumulate in spite of the high surface water productivity observed in that area. This implies that in the Eastern Equatorial Atlantic, organic carbon accumulation is strongly reduced by efficient degradation of organic matter prior to its burial. During the Last Glacial Maximum (LGM), accumulation of organic carbon was higher than during the mid-Holocene along the continental margins of Africa and South America (Brazil) as well as in the equatorial region. In the Eastern Equatorial Atlantic in particular, large relative differences between LGM and mid-Holocene accumulation rates are found. This is probably to a great extent due to better preservation of organic matter related to changes in bottom water circulation and not just a result of strongly enhanced export productivity during the glacial period. On average, a two- to three-fold increase in organic carbon accumulation during the LGM compared to mid-Holocene conditions can be deduced from our cores. However, for the deep-sea sediments this cannot be solely attributed to a glacial productivity increase, as changes in South Atlantic deep-water circulation seem to result in better organic carbon preservation during the LGM.
Resumo:
The modern Atlantic Ocean, dominated by the interactions of North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW), plays a key role in redistributing heat from the Southern to the Northern Hemisphere. In order to reconstruct the evolution of the relative importance of these two water masses, the NADW/AABW transition, reflected by the calcite lysocline, was investigated by the Globigerina bulloides dissolution index (BDX?). The depth level of the Late Glacial Maximum (LGM) calcite lysocline was elevated by several hundred metres, indicating a more corrosive water mass present at modern NADW level. Overall, the small range of BDX? data and the gradual decrease in preservation below the calcite lysocline point to a less stratified Atlantic Ocean during the LGM. Similar preservation patterns in the West and East Atlantic demonstrate that the modern west-east asymmetry did not exist due to an expansion of southern deep waters compensating for the decrease in NADW formation.
Resumo:
Magnetic susceptibility and ice-rafted debris of surface sediments in the Nordic Seas were investigated to reconstruct source areas and recent transport pathways of magnetic minerals. From the distribution of magnetic susceptibility and ice-rafted debris and published data on petrographic tracers for iceberg drift, we reconstructed a counter-clockwise iceberg drift pattern during cooler phases in the Holocene, which is similar to conceptual and numerical models for Weichselian iceberg drift. The release of basaltic debris at Scoresby Sund played a significant role for the magnetic signature of stadial/interstadial events during isotope stage 3 recorded in sediment cores of the Nordic Seas.
Resumo:
Surface samples, mostly from abyssal sediments of the South Atlantic, from parts of the equatorial Atlantic, and of the Antarctic Ocean, were investigated for clay content and clay mineral composition. Maps of relative clay mineral content were compiled, which improve previous maps by showing more details, especially at high latitudes. Large-scale relations regarding the origin and transport paths of detrital clay are revealed. High smectite concentrations are observed in abyssal regions, primarily derived from southernmost South America and from minor sources in Southwest Africa. Near submarine volcanoes of the Antarctic Ocean (South Sandwich, Bouvet Island) smectite contents exhibit distinct maxima, which is ascribed to the weathering of altered basalts and volcanic glasses. The illite distribution can be subdivided into five major zones including two maxima revealing both South African and Antarctic sources. A particularly high amount of Mg- and Fe-rich illites are observed close to East Antarctica. They are derived from biotite-bearing crystalline rocks and transported to the west by the East Antarctic Coastal Current. Chiorite and well-crystallized dioctaedral illite are typical minerals enriched within the Subantarctic and Polarfrontal-Zone but of minor importance off East Antarctica. Kaolinite dominates the clay mineral assemblage at low latitudes, where the continental source rocks (West Africa, Brazil) are mainly affected by intensive chemical weathering. Surprisingly, a slight increase of kaolinite is observed in the Enderby Basin and near the Filchner-Ronne Ice shelf. The investigated area can be subdivided into ten, large-scale clay facies zones with characteristic possible source regions and transport paths. Clay mineral assemblages of the largest part of the South Atlantic, especially of the western basins are dominated by chlorite and illite derived from the Antarctic Peninsula and southernmost South America and supported by advection within the Circumantarctic Deep Water flow. In contrast, the East Antarctic provinces are relatively small. Assemblages of the eastern basins north of 30°S are strongly influenced by African sources, controlled by weathering regimes on land and by a complex interaction of wind, river and deep ocean transport. The strong gradient in clay mineral composition at the Brazilian slope indicate a relatively low contribution of tropically derived assemblages to the western basins.