966 resultados para 14C age -400yr
Resumo:
The Indian Summer Monsoon (ISM) is a major global climatic phenomenon. Long-term precipitation proxy records of the ISM, however, are often fragmented and discontinuous, impeding an estimation of the magnitude of precipitation variability from the Last Glacial to the present. To improve our understanding of past ISM variability, we provide a continuous reconstructed record of precipitation and continental vegetation changes from the lower Ganges-Brahmaputra-Meghna catchment and the Indo-Burman ranges over the last 18,000 years (18 ka). The records derive from a marine sediment core from the northern Bay of Bengal (NBoB), and are complemented by numerical model results of spatial moisture transport and precipitation distribution over the Bengal region. The isotopic composition of terrestrial plant waxes (dD and d13C of n-alkanes) are compared to results from an isotope-enabled general atmospheric circulation model (IsoCAM) for selected time slices (pre-industrial, mid-Holocene and Heinrich Stadial 1). Comparison of proxy and model results indicate that past changes in the dD of precipitation and plant waxes were mainly driven by the amount effect, and strongly influenced by ISM rainfall. Maximum precipitation is detected for the Early Holocene Climatic Optimum (EHCO; 10.5-6 ka BP), whereas minimum precipitation occurred during the Heinrich Stadial 1 (HS1; 16.9-15.4 ka BP). The IsoCAM model results support the hypothesis of a constant moisture source (i.e. the NBoB) throughout the study period. Relative to the pre-industrial period the model reconstructions show 20% more rain during the mid-Holocene (6 ka BP) and 20% less rain during the Heinrich Stadial 1 (HS1), respectively. A shift from C4-plant dominated ecosystems during the glacial to subsequent C3/C4-mixed ones during the interglacial took place. Vegetation changes were predominantly driven by precipitation variability, as evidenced by the significant correlation between the dD and d13C alkane records. When compared to other records across the ISM domain, precipitation and vegetation changes inferred from our records and the numerical model results provide evidence for a coherent regional variability of the ISM from the Last Glacial to the present.
Resumo:
Evidence from geologic archives suggests that there were large changes in the tropical hydrologic cycle associated with the two prominent northern hemisphere deglacial cooling events, Heinrich Stadial 1 (HS1; ~19 to 15 kyr BP; kyr BP = 1000 yr before present) and the Younger Dryas (~12.9 to 11.7 kyr BP). These hydrologic shifts have been alternatively attributed to high and low latitude origin. Here, we present a new record of hydrologic variability based on planktic foraminifera-derived d18O of seawater (d18Osw) estimates from a sediment core from the tropical Eastern Indian Ocean, and using 12 additional d18Osw records, construct a single record of the dominant mode of tropical Eastern Equatorial Pacific and Indo-Pacific Warm Pool (IPWP) hydrologic variability. We show that deglacial hydrologic shifts parallel variations in the reconstructed interhemispheric temperature gradient, suggesting a strong response to variations in the Atlantic Meridional Overturning Circulation and the attendant heat redistribution. A transient model simulation of the last deglaciation suggests that hydrologic changes, including a southward shift in the Intertropical Convergence Zone (ITCZ) which likely occurred during these northern hemisphere cold events, coupled with oceanic advection and mixing, resulted in increased salinity in the Indonesian region of the IPWP and the eastern tropical Pacific, which is recorded by the d18Osw proxy. Based on our observations and modeling results we suggest the interhemispheric temperature gradient directly controls the tropical hydrologic cycle on these time scales, which in turn mediates poleward atmospheric heat transport.
Resumo:
Ice core records demonstrate a glacial-interglacial atmospheric CO2 increase by ~100 ppm, while 14C calibration efforts document a strong decrease in atmospheric 14C concentration during this period. A calculated transfer of ~530 Gt of 14C depleted carbon is required to produce the deglacial coeval rise of carbon in the atmosphere and terrestrial biosphere. This amount is usually ascribed to oceanic carbon release, although the actual mechanisms remained elusive, since an adequately old and carbon-enriched deep-ocean reservoir seemed unlikely. Here we present a new, though still fragmentary, ocean-wide d14C dataset showing that during the Last Glacial Maximum (LGM) and Heinrich Stadial 1 (HS-1) the maximum 14C age difference between ocean deep waters and the atmosphere exceeded the modern values by up to 1500 14C yr, in the extreme reaching 5100 14C yr. Below 2000 m depth the 14C ventilation age of modern ocean waters is directly linked to the concentration of dissolved inorganic carbon (DIC). We propose as working hypothesis that the modern regression of DIC vs d14C also applies for LGM times, which implies that a mean LGM aging by ~600 14C yr corresponded to a global rise of ~85-115 µmol DIC/kg in the deep ocean. Thus, the prolonged residence time of ocean deep waters may indeed have made it possible to absorb an additional ~730-980 Gt DIC, one third of which possibly originated from intermediate waters. We also infer that LGM deep-water O2 dropped to suboxic values of <10µmol/kg in the Atlantic sector of the Southern Ocean, possibly also in the subpolar North Pacific. The outlined deglacial transfer of the extra aged, deep-ocean carbon to the atmosphere via the dynamic ocean-atmosphere carbon exchange would be sufficient to account for two trends observed, (1) for the increase in atmospheric CO2 and (2) for the 190-permil drop in atmospheric d14C during the so-called HS-1 'Mystery Interval', when atmospheric 14C production rates were largely constant.
Resumo:
Stable isotope data on benthic foraminifera from more than 30 cores on the northern Emperor Seamounts and in the Okhotsk Sea are synthesized in paleohydrographic profiles spanning the depth range 1000-4000 m. Holocene (core-top) benthic foraminiferal d18O and d13C data are calibrated to modern hydrographic properties through measurements of d13C of SumCO2 and d18O of seawater. Cibicidoides stable isotope ratios are close to the d13C and equilibrium d18O of seawater, whereas Uvigerina d18O and d13C are variably offset from Cibicidoides. Glacial maximum d13C of Cibicidoides displays a different vertical profile than that of the Holocene. When results are adjusted by +0.32 per mil to account for the secular change in d13C during the last glacial maximum, the data coincide with the modern seawater and foraminiferal curves deeper than ~2 km. However, at shallower depths d13C gradually increases by as much as 1 per mil above the modern value. Furthermore, above 2 km the benthic d18O decreases by ~0.5 per mil. These results are consistent with a benthic front at ~2 km in the North Pacific (see Herguera et al., 1992), but they differ from interpretations based on trace metal data which indicate a source of nutrient-depleted deep water during glaciation. The isotopic data suggest that during glaciation there was a better ventilated watermass at intermediate depths in the far northwestern Pacific, it was relatively fresher than deep waters there, and deep waters were as nutrient-rich as today.
Resumo:
Deep water formation in the North Atlantic and Southern Ocean is widely thought to influence deglacial CO2 rise and climate change; here we suggest that deep water formation in the North Pacific may also play an important role. We present paired radiocarbon and boron isotope data from foraminifera from sediment core MD02-2489 at 3640 m in the North East Pacific. These show a pronounced excursion during Heinrich Stadial 1, with benthic-planktic radiocarbon offsets dropping to ~350 years, accompanied by a decrease in benthic d11B. We suggest this is driven by the onset of deep convection in the North Pacific, which mixes young shallow waters to depth, old deep waters to the surface, and low-pH water from intermediate depths into the deep ocean. This deep water formation event was likely driven by an increase in surface salinity, due to subdued atmospheric/monsoonal freshwater flux during Heinrich Stadial 1. The ability of North Pacific Deep Water (NPDW) formation to explain the excursions seen in our data is demonstrated in a series of experiments with an intermediate complexity Earth system model. These experiments also show that breakdown of stratification in the North Pacific leads to a rapid ~30 ppm increase in atmospheric CO2, along with decreases in atmospheric d13C and D14C, consistent with observations of the early deglaciation. Our inference of deep water formation is based mainly on results from a single sediment core, and our boron isotope data are unavoidably sparse in the key HS1 interval, so this hypothesis merits further testing. However we note that there is independent support for breakdown of stratification in shallower waters during this period, including a minimum in d15N, younging in intermediate water 14C, and regional warming. We also re-evaluate deglacial changes in North Pacific productivity and carbonate preservation in light of our new data, and suggest that the regional pulse of export production observed during the Bølling-Allerød is promoted by relatively stratified conditions, with increased light availability and a shallow, potent nutricline. Overall, our work highlights the potential of NPDW formation to play a significant and hitherto unrealized role in deglacial climate change and CO2 rise.
Resumo:
In this study, we demonstrate the utility of amino acid geochronology based on single-foraminiferal tests in Quaternary sediment cores from the Queensland margin, Australia. The large planktonic foraminifer Pulleniatina obliquiloculata is ubiquitous in shelf, slope, and basin sediments of north Queensland as well as pantropical oceans. Fossil tests are resistant to dissolution, and retain substantial concentrations of amino acids (2-4 nmol/mg of shell) over hundreds of thousands of years. Amino acid D and L isomers of aspartic acid (Asp) and glutamic acid (Glu) were separated using reverse phase chromatography, which is sensitive enough to analyze individual foraminifera tests. In all, 462 Pulleniatina tests from 80 horizons in 11 cores exhibit a systematic increase in D/L ratios down core. D/L ratios were determined in 32 samples whose ages are known from AMS 14C analyses. In all cases, the Asp and Glu D/L ratios are concordant with 14C age. D/L ratios of equal-age samples are slightly lower for cores taken from deeper water sites, reflecting the sensitivity of the rate of racemization to bottom water temperature. Beyond the range of 14C dating, previously identified marine oxygen-isotope stage boundaries provide approximate ages of the sediments up to about 500,000 years. For this longer time frame, D/L ratios also vary systematically with isotope-correlated ages. The rate of racemization for Glu and Asp was modeled using power functions. These equations can be used to estimate ages of samples from the Queensland margin extending back at least 500,000 years. This analytical approach provides new opportunities for geochronological control necessary to understand fundamental sedimentary processes affecting a wide range of marine environments.
Resumo:
The South China Sea (SCS) is well connected with the western Pacific and influenced by the East Asian monsoon. We have examined temporal variations in radiocarbon marine reservoir ages (R) and regional marine reservoir corrections (DeltaR) of the SCS during the Holocene using paired measurements of AMS 14C and TIMS 230Th on 20 pristine corals. The results show large fluctuations in both R and DeltaR values over the past 7500 years (yrs) with two distinct plateaus during 7.5-5.6 and 3.5-2.5 thousand calendar years before present (cal ka BP). The respective weighted mean DeltaR values of these plateaus are 151 ± 85 and 89 ± 59 yrs, which are significantly higher than its modern value of -23 ± 52 yrs. This suggests that using a constant modern DeltaR value to calibrate 14C dates of the SCS marine samples will introduce additional errors to the calibrated ages. Our results provide the first database for the Holocene R and DeltaR values of the SCS for improved radiocarbon calibration of marine samples. We interpret the two DeltaR plateaus as being related to two intervals with weakened El Niño - Southern Oscillation (ENSO) and intensified East Asian summer monsoon (EASM). This is because the 14C content of the SCS surface water is controlled by both the 14C concentration of the Pacific North Equatorial Current (NEC) which is in turn influenced by ENSO-induced upwelling along the Pacific equator and vertical upwelling within the SCS as a result of moisture transportation to midlatitude region to supply the EASM rainfall.
Resumo:
Surface sediments from the eastern South Atlantic were investigated for their lipid biomarker contents and bulk organic geochemical characteristics to identify sources, transport pathways and preservation processes of organic components. The sediments cover a wide range of depositional settings with large differences in mass accumulation rates. The highest marine organic carbon (OC) contributions are detected along the coast, especially underlying the Benguela upwelling system. Terrigenous OC contributions are highest in the Congo deep-sea fan. Lipid biomarker fluxes are significantly correlated to the extent of oxygen exposure in the sediment. Normalization to total organic carbon (TOC) contents enabled the characterization of regional lipid biomarker production and transport mechanisms. Principal component analyses revealed five distinct groups of characteristic molecular and bulk organic geochemical parameters. Combined with information on lipid sources, the main controlling mechanisms of the spatial lipid distributions in the surface sediments are defined, indicating marine productivity related to river-induced mixing and oceanic upwelling, wind-driven deep upwelling, river-supply of terrigenous organic material, shallow coastal upwelling and eolian supply of plant-waxes.
Resumo:
Radiocarbon and uranium-thorium dating results are presented from a genus of calcitic Antarctic cold-water octocorals (family Coralliidae), which were collected from the Marie Byrd Seamounts in the Amundsen Sea (Pacific sector of the Southern Ocean) and which to date have not been investigated geochemically. The geochronological results are set in context with solution and laser ablation-based element/Ca ratios (Li, B, Mg, Mn, Sr, Ba, U, Th). Octocoral radiocarbon ages on living corals are in excellent agreement with modern ambient deep-water D14C, while multiple samples of individual fossil coral specimens yielded reproducible radiocarbon ages. Provided that local radiocarbon reservoir ages can be derived for a given time, fossil Amundsen Sea octocorals should be reliably dateable by means of radiocarbon. In contrast to the encouraging radiocarbon findings, the uranium-series data are more difficult to interpret. The uranium concentration of these calcitic octocorals is an order of magnitude lower than in the aragonitic hexacorals that are conventionally used for geochronological investigations. While modern and Late Holocene octocorals yield initial d234U in good agreement with modern seawater, our results reveal preferential inward diffusion of dissolved alpha-recoiled 234U and its impact on fossil coral d234U. Besides alpha-recoil related 234U diffusion, high-resolution sampling of two fossil octocorals further demonstrates that diagenetic uranium mobility has offset apparent coral U-series ages. Combined with the preferential alpha-recoil 234U diffusion, this process has prevented fossil octocorals from preserving a closed system U-series calendar age for longer than a few thousand years. Moreover, several corals investigated contain significant initial thorium, which cannot be adequately corrected for because of an apparently variable initial 232Th/230Th. Our results demonstrate that calcitic cold-water corals are unsuitable for reliable U-series dating. Mg/Ca ratios within single octocoral specimens are internally strikingly homogeneous, and appear promising in terms of their response to ambient temperature. Magnesium/lithium ratios are significantly higher than usually observed in other deep marine calcifiers and for many of our studied corals are remarkably close to seawater compositions. Although this family of octocorals is unsuitable for glacial deep-water D14C reconstructions, our findings highlight some important differences between hexacoral (aragonitic) and octocoral (calcitic) biomineralisation. Calcitic octocorals could still be useful for trace element and some isotopic studies, such as reconstruction of ambient deep water neodymium isotope composition or pH, via boron isotopic measurements.
Resumo:
Our record of Younger Dryas intermediate-depth seawater D14C from North Atlantic deep-sea corals supports a link between abrupt climate change and intermediate ocean variability. Our data show that northern source intermediate water (~1700 m) was partially replaced by 14C-depleted southern source water at the onset of the event, consistent with a reduction in the rate of North Atlantic Deep Water formation. This transition requires the existence of large, mobile gradients of D14C in the ocean during the Younger Dryas. The D14C water column profile from Keigwin (2004) provides direct evidence for the presence of one such gradient at the beginning of the Younger Dryas (~12.9 ka), with a 100 per mil offset between shallow (<~2400 m) and deep water. Our early Younger Dryas data are consistent with this profile and also show a D14C inversion, with 35 per mil more enriched water at ~2400 m than at ~1700 m. This feature is probably the result of mixing between relatively well 14C ventilated northern source water and more poorly 14C ventilated southern source intermediate water, which is slightly shallower. Over the rest of the Younger Dryas our intermediate water/deepwater coral D14C data gradually increase, while the atmosphere D14C drops. For a very brief interval at ~12.0 ka and at the end of the Younger Dryas (11.5 ka), intermediate water D14C (~1200 m) approached atmospheric D14C. These enriched D14C results suggest an enhanced initial D14C content of the water and demonstrate the presence of large lateral D14C gradients in the intermediate/deep ocean in addition to the sharp vertical shift at ~2500 m. The transient D14C enrichment at ~12.0 ka occurred in the middle of the Younger Dryas and demonstrates that there is at least one time when the intermediate/deep ocean underwent dramatic change but with much smaller effects in other paleoclimatic records.
Resumo:
A piston core from the Maldives carbonate platform was investigated for carbonate mineralogy, grain-size distributions, calcium carbonate content and organic carbon. The sedimentary record was linked to Late Pleistocene sea-level variations, using an age model based on oxygen isotopes obtained from planktonic foramanifera, nannofossil biostratigraphy and 14C age determinations. The correlation between the sedimentary record and Late Pleistocene sea-level showed that variations in aragonite and mud during the past 150 000 years were clearly related to flooding and sea floor exposure of the main lagoons of the atolls of the Maldives carbonate platform. Platform flooding events were characterized by strongly increased deposition of aragonite and mud within the Inner Sea of the Maldives. Exposure events, in contrast, can be recognized by rapid decreases in the values of both proxy records. The results show that sediments on the Maldives carbonate platform contain a continuous record of Pleistocene sea-level variations. These sediments may, therefore, contribute to a better understanding of regional and even global sea-level changes, and yield new insights into the interplay between ocean currents and carbonate platform morphology.
Resumo:
Although sulfur is an essential element for marine primary production and critical for climate processes, little is known about the oceanic pool of non-volatile dissolved organic sulfur (DOS). We present a basin-scale distribution of solid phase extractable DOS in the East Atlantic Ocean and the Atlantic sector of the Southern Ocean. While molar DOS versus dissolved organic nitrogen (DON) ratios of 0.11 ± 0.024 in Atlantic surface water resembled phytoplankton stoichiometry (S/N ~ 0.08), increasing dissolved organic carbon (DOC) versus DOS ratios and decreasing methionine-S yield demonstrated selective DOS removal and active involvement in marine biogeochemical cycles. Based on stoichiometric estimates, the minimum global inventory of marine DOS is 6.7 Pg S, exceeding all other marine organic sulfur reservoirs by an order of magnitude.