284 resultados para [SO4]2-


Relevância:

60.00% 60.00%

Publicador:

Resumo:

During ODP Leg 111 Hole 504B was extended 212 m deeper into the sheeted dikes of oceanic Layer 2, for a total penetration of 1288 m within basement. Study of the mineralogy, chemistry, and stable isotopic compositions of the rocks recovered on Leg 111 has confirmed and extended the previous model for hydrothermal alteration at the site: axial greenschist hydrothermal metamorphism was followed by seawater recharge and subsequent off-axis alteration. The dikes are depleted in 18O (mean delta18O = +5.1 ? +/- 0.6 ?) relative to fresh mid-ocean ridge basalt. Oxygen isotopic data on whole rocks and isolated secondary minerals indicate temperatures during axial metamorphism of 250°-350°C and water/rock ratios about one. Increasing amounts of actinolite with depth in the dike section, however, suggest that temperatures increased downward in the dikes. Pyrite + pyrrhotite + chalcopyrite + magnetite was the stable sulfide + oxide mineral assemblage during axial alteration, but these minerals partly re-equilibrated later at temperatures less than 200°C. The dikes sampled on Leg 111 contain an average of 500 ppm sulfur, slightly lower than igneous values. The delta34S values of sulfide average 0?, which indicates the presence of basaltic sulfide and incorporation of little or no seawater-derived sulfide into the rocks. These data are consistent with models for the presence of rock-dominated sulfur in deep hydrothermal fluids. The presence of anhydrite at 1176 m within basement indicates that unaltered seawater can penetrate to significant depths in the crust during recharge.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Results of mineralogical and isotopic analyzes of sulfur and carbon in carbonate nodules and host bottom sediments and results of 14C measurement in carbonate nodules are reported. It is proved that the carbonate nodules formed 11-22 thousand years ago in anaerobic diagenesis of bottom sediments rich in organic matter. Isotopic light metabolic carbon dioxide was a source of carbonate for nodules. It formed during microbial degradation of organic matter of bottom sediments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Six Deep Sea Drilling Project (DSDP) Sites (252, 285, 315, 317, 336, 386) were examined for the chemical composition of the dissolved salts in interstitial waters, the oxygen isotopic composition of the interstitial waters, and the major ion composition of the bulk solid sediments. An examination of the concentration-depth profiles of dissolved calcium, magnesium, potassium, and H218O in conjunction with oxygen isotope mass balance calculations confirms the hypothesis that in DSDP pelagic drill sites concentration gradients in Ca. Mg. K, and H218O are largely due to alteration reactions occurring in the basalts of Layer 2 and to alteration reactions involving volcanic matter dispersed in the sediment column. Oxygen isotope mass balance calculations require substantial alteration of Layer 2 (up to 25% of the upper 1000 m). but only minor exchange of Ca, Mg, and K occurs with the overlying ocean. This implies that alteration reactions in Layer 2 are almost isochemical.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sea ice and dust flux increased greatly in the Southern Ocean during the last glacial period. Palaeorecords provide contradictory evidence about marine productivity in this region, but beyond one glacial cycle, data were sparse. Here we present continuous chemical proxy data spanning the last eight glacial cycles (740,000 years) from the Dome C Antarctic ice core. These data constrain winter sea-ice extent in the Indian Ocean, Southern Ocean biogenic productivity and Patagonian climatic conditions. We found that maximum sea-ice extent is closely tied to Antarctic temperature on multi-millennial timescales, but less so on shorter timescales. Biological dimethylsulphide emissions south of the polar front seem to have changed little with climate, suggesting that sulphur compounds were not active in climate regulation. We observe large glacial-interglacial contrasts in iron deposition, which we infer reflects strongly changing Patagonian conditions. During glacial terminations, changes in Patagonia apparently preceded sea-ice reduction, indicating that multiple mechanisms may be responsible for different phases of CO2 increase during glacial terminations. We observe no changes in internal climatic feedbacks that could have caused the change in amplitude of Antarctic temperature variations observed 440,000 years ago.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The evolution of pore fluids migrating through the forearc basins, continental massif, and accretionary prism of the Peru margin is recorded in the sequence of carbonate cements filling intergranular and fracture porosities. Petrographic, mineralogic, and isotopic analyses were obtained from cemented clastic sediments and tectonic breccias recovered during Leg 112 drilling. Microbial decomposition of the organic-rich upwelling facies occurs during early marine diagenesis, initially by sulfate-reduction mechanisms in the shallow subsurface, succeeded by carbonate reduction at depth. Microcrystalline, authigenic cements formed in the sulfate-reduction zone are 13C-depleted (to -20.1 per mil PDB), and those formed in the carbonate-reduction zone are 13C-enriched (to +19.0 per mil PDB). Calcium-rich dolomites and near-stoichiometric dolomites having uniformly heavy d18O values (+2.7 to +6.6 per mil PDB) are typical organic decomposition products. Quaternary marine dolomites from continental-shelf environments exhibit the strongest sulfate-reduction signatures, suggesting that Pleistocene sea-level fluctuations created a more oxygenated water column, caused periodic winnowing of the sediment floor, and expanded the subsurface penetration of marine sulfate. We have tentatively identified four exotic cement types precipitated from advected fluids and derived from the following diagenetic environments: (1) meteoric recharge, (2) basalt alteration, (3) seafloor venting and (4) hypersaline concentration. Coarsely crystalline, low-magnesium (Lo-Mg) calcite cements having pendant and blocky-spar morphologies, extremely negative d18O values (to -7.5 per mil PDB), and intermediate d13C values (-0.4 per mil to +4.6 per mil PDB) are found in shallow-marine Eocene strata. These cements are evidently products of meteoric diagenesis following subaerial emergence during late Eocene orogenic movements, although the strata have since subsided to greater than 4,000 m below sea level. Lo-Mg calcite cements filling scaly fabrics in the late Miocene accretionary prism sediments are apparently derived from fluids having lowered magnesium/calcium (Mg/Ca) and 18O/16O ratios; such fluids may have reacted with the subducting oceanic crust and ascended through the forearc along shallow-dipping thrust faults. Micritic, high-magnesium (Hi-Mg) calcite cements having extremely depleted d13C values (to -37.3%c PDB), and a benthic fauna of giant clams (Calyptogena sp.) supported by a symbiotic, chemoautotrophic metabolism, provide evidence for venting of methane-charged waters at the seafloor. Enriched d18O values (to +6.6%c PDB) in micritic dolomites from the continental shelf may be derived from hypersaline fluids that were concentrated in restricted lagoons behind an outer-shelf basement ridge, reactivated during late Miocene orogenesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bottom-simulating reflectors were observed beneath the southeastern slope of the Dongsha Islands in the South China Sea, raising the potential for the presence of gas hydrate in the area. We have analyzed the chemical and isotopic compositions of interstitial water, headspace gas, and authigenic siderite concretions from Site 1146. Geochemical anomalies, including a slight decrease of chlorine concentration in interstitial water, substantial increase of methane concentration in headspace gas, and 18O enrichment in the authigenic siderite concretion below 400 meters below seafloor are probably caused by the decomposition of gas hydrate. The low-chlorine pore fluids contain higher molecular-weight hydrocarbons and probably migrate to Site 1146 along faults or bedded planes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A comparative study was carried out on soils of the maritime (Arctowski, King George Island) and the continental (Casey, Wilkes Land) Antarctic. Soil sampIes are described for surface layers (0-10 cm) by their in situ temperature profiles as well as by field and laboratory analyses of grain sizes, pH and nutrient contents. Active cryoturbation is a main factor of mixing processes in surfaces with high silt and clay content. In both regions processes of podzolisation were recognized. Microclimatic conditions show the importance of small scale processes which are of special importance for freeze-thaw cycles. The distribution of nutrients and other inorganic components is rather homogeneous in regosols and leptosols. But in soils with organic top layers by lichen and moss cushions (crusts) accumulation occurs as well as displacement of metal ions into deeper layers (>10 cm). Histosols show patterns of brown soils. Special attention is given to the origin of nitrogen compounts and the different ways of import of other components (e.g. chloride) into the Antarctic system are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Studies of sulfur behavior in the water column and in sediments in river and seawater mixing zone were conducted in three areas of the Black and Azov Seas. These investigations showed constancy of sulfate concentrations versus chlorinity. Sulfur isotope composition in sulfates of surface, bottom, and pore waters depended on sulfate contents and salinity. The dependence was complicated by partial sulfate depletion in pore water due to bacterial sulfate reduction and also by alteration of isotope composition. Surface sediments in mixing zones are characterized by intensive sulfate reduction, great variability of content and isotopic composition of reduced sulfur, and a low mean isotopic fractionation factor of sulfur.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Physical properties (water content, bulk density, magnetic susceptibility, natural remanent magnetization, nature of magnetization, and composition of ferromagnetic fraction), chemical, and (optionally) mineral composition of bottom sediments from the north-west Sea of Japan have been studied. Their stratigraphic subdivision based on composition of diatoms has been carried out. Obtained data have allowed to find out some aspects of influence of paleogeographic conditions and diagenetic processes on change of physical properties of the sediments, as well as on their composition in Holocene and Late Pleistocene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The chemistry of snow and ice cores from Svalbard is influenced by variations in local sea ice margin and distance to open water. Snow pits sampled at two summits of Vestfonna ice cap (Nordaustlandet, Svalbard), exhibit spatially heterogeneous soluble ions concentrations despite similar accumulation rates, reflecting the importance of small-scale weather patterns on this island ice cap. The snow pack on the western summit shows higher average values of marine ions and a winter snow layer that is relatively depleted in sulphate. One part of the winter snow pack exhibits a [SO4-/Na+] ratio reduced by two thirds compared with its ratio in sea water. This low sulphate content in winter snow is interpreted as the signature of frost flowers, which are formed on young sea ice when offshore winds predominate. Frost flowers have been described as the dominant source of sea salt to aerosol and precipitation in ice cores in coastal Antarctica but this is the first time their chemical signal has been described in the Arctic. The eastern summit does not show any frost flower signature and we interpret the unusually dynamic ice transport and rapid formation of thin ice on the Hinlopen Strait as the source of the frost flowers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inversion of isotopic composition in the SO4(2-)-H2S system is shown to be universal in Neoeuxine sediments and an explanation of its occurrence is proposed. Change in isotopic composition of sulfate sulfur in Black Sea waters over last 10-15 thousand years is reconstructed. Periods of alteration between aerobic and anaerobic situations are identified, the beginning of entry of Mediterranean waters into the basin is dated, presence of authigenic carbonates in sediments of the sea is established and amounts are determined. Methane generation from carbon dioxide is shown to have been replaced by its generation from acetate in the paleo-Black Sea period.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Through the Deep Sea Drilling Project samples of interstitial solutions of deeply buried marine sediments throughout the World Ocean have been obtained and analyzed. The studies have shown that in all but the most slowly deposited sediments pore fluids exhibit changes in composition upon burial. These changes can be grouped into a few consistent patterns that facilitate identification of the diagenetic reactions occurring in the sediments. Pelagic clays and slowly deposited (<1 cm/1000 yr) biogenic sediments are the only types that exhibit little evidence of reaction in the pore waters. In most biogenic sediments sea water undergoes considerable alteration. In sediments deposited at rates up to a few cm/1000 yr the changes chiefly involve gains of Ca(2+) and Sr(2+) and losses of Mg(2+) which balance the Ca(2+) enrichment. The Ca-Mg substitution may often reach 30 mM/kg while Sr(2+) may be enriched 15-fold over sea water. These changes reflect recrystallization of biogenic calcite and the substitution of Mg(2+) for Ca(2+) during this reaction. The Ca-Mg-carbonate formed is most likely a dolomitic phase. A related but more complex pattern is found in carbonate sediments deposited at somewhat greater rates. Ca(2+) and Sr(2+) enrichment is again characteristic, but Mg(2+) losses exceed Ca(2+) gains with the excess being balanced by SO4(post staggered 2-) losses. The data indicate that the reactions are similar to those noted above, except that the Ca(2+) released is not kept in solution but is precipitated by the HCO3(post staggered -) produced in SO4(post staggered 2-) reduction. In both these types of pore waters Na(+) is usually conservative, but K(+) depletions are frequent. In several partly consolidated sediment sections approaching igneous basement contact, very marked interstitial calcium enrichment has been found (to 5.5 g/kg). These phenomena are marked by pronounced depletion in Na(+), Si and CO2, and slight enhancement in Cl(-). The changes are attributed to exchange of Na(+) for Ca(2+) in silicate minerals forming from submarine weathering of igneous rocks such as basalts. Water is also consumed in these reactions, accounting for minor increases in total interstitial salinity. Terrigenous, organic-rich sediments deposited rapidly along continental margins also exhibit significant evidences of alteration. Microbial reactions involving organic matter lead to complete removal of SO4(post staggered 2-), strong HCO3(post staggered -) enrichment, formation of NH4(post staggered +), and methane synthesis from H2 and CO2 once SO4(post staggered 2-) is eliminated. K+ and often Na+ (slightly) are depleted in the interstitial waters. Ca(2+) depletion may occur owing to precipitation of CaCO3. In most cases interstitial Cl- remains relatively constant, but increases are noted over evaporitic strata, and decreases in interstitial Cl- are observed in some sediments adjacent to continents.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This publication presents results of microbiological and biogeochemical studies in the White Sea. Material was obtained during a series of expeditions in 1999-2002. The studies were carried out in the open part of the White Sea, in the Onega, Dvina and Kandalaksha Bays, as well as in the intertidal zone of the Kandalaksha Bay. Quantitative characteristics of activity of microbial processes in waters and bottom sediments of the White Sea were obtained. The total number of bacteria was equal to 150000-800000 cells/ml, and intensity of dark CO2 assimilation was equal to 0.9-17 µg C/l/day. Bacterial sulfate reduction was equal to 3-150 mg S/m**2/day, and methane formation and oxidation was equal to 13-6840 and 20-14650 µl CH4/m**2/day, respectively. Extremely high values of intensity of all principal microbial processes were found in intertidal sediments rich in organic matter: under decomposing macrophytes, in local pits at the lower intertidal boundary, and in the mouth of a freshwater brook. Average hydrogen sulfide production in highly productive intertidal sediments was 1950-4300 mg S/m**2/day, methane production was 0.5-8.7 ml CH4/m**2/day, and intensity of methane oxidation was up to 17.5 ml CH4/m**2/day. Calculations performed with account for areas occupied by microlandscapes of increased productivity showed that diurnal production of H2S and CH4 per 1 km**2 of the intertidal zone (August) was estimated as 60.8-202 kg S/km**2/day and 192-300 l CH4/km**2/day, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

On Leg 96 of the Deep Sea Drilling Project (DSDP), holes were drilled in Orca and Pigmy basins on the northern Gulf of Mexico continental slope and on the Mississippi Fan. The holes on the fan encountered interbedded sand, silt, and mud deposited extremely rapidly, most during late Wisconsin glacial time. Pore-water chemistry in these holes is variable, but does not follow lithologic changes in any simple way. Both Ca and SO4 are enriched in the pore water of many samples from the fan. Two sites drilled in the prominent central channel of the middle fan show rapid SO4 reduction with depth, whereas two nearby sites in overbank deposits show no sulfate reduction for 300 m. Calcium concentration decreases as SO4 is depleted and Li follows the same pattern. Strontium, which like Li, is enriched in samples enriched in Ca, does not decrease with SO4 and Ca. Potassium in the pore water decreases with depth at almost all sites. Sulfate reduction was active at the two basin sites and, as on the fan, this resulted in calcium carbonate precipitation and a lowering of pore water Ca, Mg, and Li. The Orca Basin site was drilled through a brine pool of 258? salinity. Pore-water salinity decreases smoothly with depth to 50 m and remains well above normal seawater values to the bottom of the hole at about 90 m. This suggests constant sedimentation under anoxic hypersaline conditions for at least the last 50,000 yr.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Marine sediments are the main sink in the oceanic phosphorus (P) cycle. The activity of benthic microorganisms is decisive for regeneration, reflux, or burial of inorganic phosphate (Pi), which has a strong impact on marine productivity. Recent formation of phosphorites on the continental shelf and a succession of different sedimentary environments make the Benguela upwelling system a prime region for studying the role of microbes in P biogeochemistry. The oxygen isotope signature of pore water phosphate (d18OP) carries characteristic information of microbial P cycling: Intracellular turnover of phosphorylated biomolecules results in isotopic equilibrium with ambient water, while enzymatic regeneration of Pi from organic matter produces distinct offsets from equilibrium. The balance of these two processes is the major control for d18OP. Our study assesses the importance of microbial P cycling relative to regeneration of Pi from organic matter from a transect across the Namibian continental shelf and slope by combining pore water chemistry (sulfate, sulfide, ferrous iron, Pi), steady-state turnover rate modeling, and oxygen isotope geochemistry of Pi. We found d18OP values in a range from 12.8 per mill to 26.6 per mill, both in equilibrium as well as pronounced disequilibrium with water. Our data show a trend towards regeneration signatures (disequilibrium) under low mineralization activity and low Pi concentrations, and microbial turnover signatures (equilibrium) under high mineralization activity and high Pi concentrations. These findings are opposite to observations from water column studies where regeneration signatures were found to coincide with high mineralization activity and high Pi concentrations. It appears that preferential Pi regeneration in marine sediments does not necessarily coincide with a disequilibrium d18OP signature. We propose that microbial Pi uptake strategies, which are controlled by Pi availability, are decisive for the alteration of the isotope signature. This hypothesis is supported by the observation of efficient microbial Pi turnover (equilibrium signatures) in the phosphogenic sediments of the Benguela upwelling system.