994 resultados para Age, 14C AMS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 270 cm long sediment sequence was recovered with a piston corer from east lobe Bonney, Taylor Valley, Antarctica, and characterized according to its sedimentological, mineralogical, and geochemical properties. It is the first record of such length recovered from east lobe Bonney. The sediment core is mainly composed of halite crystals of different sizes, water, and a relatively low and stable proportion of clastic particles. Although the sediment surface was probably disturbed by the coring process and absence or low contents of organic material or carbonates hampers the establishment of a robust chronology by radiocarbon dating, the core probably contains at least several hundred years of information about the history of the lake and the Bonney basin. Variations in halite crystal sizes and amount as well as variations in the composition of clastic material can be related to past lake level changes and evaporation cycles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The silicic acid leakage hypothesis (SALH) predicts that during glacial periods excess silicic acid was transported from the Southern Ocean to lower latitudes, which favored diatom production over coccolithophorid production and caused a drawdown of atmospheric CO2. Downcore records of 230Th-normalized opal (biogenic silica) fluxes from 31 cores in the Pacific sector of the Southern Ocean were used to compare diatom productivity during the last glacial period to that of the Holocene and to examine the evidence for increased glacial Si export to the tropics. Average glacial opal fluxes south of the modern Antarctic Polar Front (APF) were less than during the Holocene, while average glacial opal fluxes north of the APF were greater than during the Holocene. However, the magnitude of the increase north of the APF was not enough to offset decreased fluxes to the south, resulting in a decrease in opal burial in the Pacific sector of the Southern Ocean during the last glacial period, equivalent to approximately 15 Gt opal/ka1. This is consistent with the work of Chase et al. (2003, doi:10.1016/S0967-0645(02)00595-7), and satisfies the primary requirement of the SALH, assuming that the upwelled supply of Si was approximately equivalent during the Holocene and the glacial period. However, previous results from the equatorial oceans are inconsistent with the other predictions of the SALH, namely that either the Corg:CaCO3 ratio or the rate of opal burial should have increased during glacial periods. We compare the magnitudes of changes in the Southern Ocean and the tropics and suggest that Si escaping the glacial Southern Ocean must have had an alternate destination, possibly the continental margins. There is currently insufficient data to test this hypothesis, but the existence of this sink and its potential impact on glacial pCO2 remain interesting topics for future study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-glaciated Arctic lowlands in north-east Siberia were subjected to extensive landscape and environmental changes during the Late Quaternary. Coastal cliffs along the Arctic shelf seas expose terrestrial archives containing numerous palaeoenvironmental indicators (e.g., pollen, plant macro-fossils and mammal fossils) preserved in the permafrost. The presented sedimentological (grain size, magnetic susceptibility and biogeochemical parameters), cryolithological, geochronological (radiocarbon, accelerator mass spectrometry and infrared-stimulated luminescence), heavy mineral and palaeoecological records from Cape Mamontov Klyk record the environmental dynamics of an Arctic shelf lowland east of the Taymyr Peninsula, and thus, near the eastern edge of the Eurasian ice sheet, over the last 60 Ky. This region is also considered to be the westernmost part of Beringia, the non-glaciated landmass that lay between the Eurasian and the Laurentian ice caps during the Late Pleistocene. Several units and subunits of sand deposits, peat-sand alternations, ice-rich palaeocryosol sequences (Ice Complex) and peaty fillings of thermokarst depressions and valleys were presented. The recorded proxy data sets reflect cold stadial climate conditions between 60 and 50 Kya, moderate inderstadial conditions between 50 and 25 Kya and cold stadial conditions from 25 to 15 Kya. The Late Pleistocene to Holocene transition, including the Allerød warm period, the early to middle Holocene thermal optimum and the late Holocene cooling, are also recorded. Three phases of landscape dynamic (fluvial/alluvial, irregular slope run-off and thermokarst) were presented in a schematic model, and were subsequently correlated with the supraregional environmental history between the Early Weichselian and the Holocene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We compile and compare data for the last 150,000 years from four deep-sea cores in the midlatitude zone of the Southern Hemisphere. We recalculate sea surface temperature estimates derived from foraminifera and compare these with estimates derived from alkenones and magnesium/calcium ratios in foraminiferal carbonate and with accompanying sedimentological and pollen records on a common absolute timescale. Using a stack of the highest-resolution records, we find that first-order climate change occurs in concert with changes in insolation in the Northern Hemisphere. Glacier extent and inferred vegetation changes in Australia and New Zealand vary in tandem with sea surface temperatures, signifying close links between oceanic and terrestrial temperature. In the Southern Ocean, rapid temperature change of the order of 6°C occurs within a few centuries and appears to have played an important role in midlatitude climate change. Sea surface temperature changes over longer periods closely match proxy temperature records from Antarctic ice cores. Warm events correlate with Antarctic events A1-A4 and appear to occur just before Dansgaard-Oeschger events 8, 12, 14, and 17 in Greenland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study was made of three cores from the Faeroe-Shetland gateway, based on planktonic foraminifera, oxygen isotopes, accelerator mass spectrometry 14C dates, magnetic susceptibility, and counts of ice rafted debris (IRD). The data, covering the period 30-10 ka, show that during the Last Glacial Maximum the Arctic Front occupied a position close to the Faeroes, allowing a persisting inflow of Atlantic surface water into the Faeroe-Shetland Channel. The oceanographic environment during deposition of two IRD layers is influenced by Atlantic surface water masses during the lower IRD layer, with transport of icebergs from N-NW. Polar surface water conditions prevailed only during deposition of the upper IRD layer. There is no indication of surface meltwater influence in the region during the deglaciation, but there is a persistent influence of Atlantic surface water masses in the region. Thus we conclude that during almost the entire period (30-10 ka) the Faeroe-Shetland Channel was a gateway for transport of Atlantic surface water toward the Norwegian Sea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A relative sea-level curve for the Holocene is constructed for Polyarny on the Kola Peninsula, northwest Russia. The curve is based on 18 radiocarbon dates of isolation contacts, identified from lithological and diatomological criteria, in nine lake basins situated between 12 and 57 m a.s.l. Most of the lakes show a conformable, regressive I-II-III (marine-transitional-freshwater) facies succession, indicating a postglacial history comprising an early (10,000-9000 radiocarbon years BP) phase of rapid, glacio-isostatically induced emergence (~5 cm/year) and a later phase (after 7000 years BP,) having a moderate rate of emergence (<0.5 cm/year). Three lakes together record a phase of very low rate of emergence or slight sea-level rise at a level of ~27 m a.s.l., between 8500 and 7000 years BP, which correlates with the regional Tapes transgression. Pollen stratigraphy in the highest lake shows that the area was deglaciated before the Younger Dryas and that previously reconstructed Younger Dryas glacier margins along the north Kola coast lie too far north

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ice cores provide a record of changes in dust flux to Antarctica, which is thought to reflect changes in atmospheric circulation and environmental conditions in dust source areas (Forster et al., 2007; Diekmann et al. 2000, doi:10.1016/S0031-0182(00)00138-3; Winckler et al., 2008, doi:10.1126/science.1150595; Reader et al., 1999, doi:10.1029/1999JD900033; Mahowald et al., 1999, doi:10.1029/1999JD900084; Petit et al., 1999, doi:10.1038/20859; 1990, doi:10.1038/343056a0 Delmonte et al., 2009, doi:10.1029/2008GL033382; Lambert et al., 2008, doi:10.1038/nature06763). Isotopic tracers suggest that South America is the dominant source of the dust (Grousset et al., 1992, doi:10.1016/0012-821X(92)90177-W; Basile et al., 1997, doi:10.1016/S0012-821X(96)00255-5; Gaiero et al., 2007, doi:10.1016/j.chemgeo.2006.11.003), but it is unclear what led to the variable deposition of dust at concentrations 20-50 times higher than present in glacial-aged ice (Petit et al., 1990, doi:10.1038/343056a0; Lambert et al., 2008, doi:10.1038/nature06763). Here we characterize the age and composition of Patagonian glacial outwash sediments, to assess the relationship between the Antarctic dust record from Dome C (refs Lambert et al., 2008, doi:10.1038/nature06763; Wolff et al., 2006, doi:10.1038/nature04614) and Patagonian glacial fluctuations (Sugden et al., 2005; McCulloch et al., 2005, doi:10.1111/j.0435-3676.2005.00260.x; Kaplan et al., 2008, doi:10.1016/j.quascirev.2007.09.013) for the past 80,000 years. We show that dust peaks in Antarctica coincide with periods in Patagonia when rivers of glacial meltwater deposited sediment directly onto easily mobilized outwash plains. No dust peaks were noted when the glaciers instead terminated directly into pro-glacial lakes. We thus propose that the variable sediment supply resulting from Patagonian glacial fluctuations may have acted as an on/off switch for Antarctic dust deposition. At the last glacial termination, Patagonian glaciers quickly retreated into lakes, which may help explain why the deglacial decline in Antarctic dust concentrations preceded the main phase of warming, sea-level rise and reduction in Southern Hemisphere sea-ice extent (Wolff et al., 2006, doi:10.1038/nature04614).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A close look at the sedimentology of Heinrich event 4 from the northwest Labrador Sea indicates that an extended ice margin, perhaps greater than before Heinrich events 1 or 2 (H-1 and H-2), existed in the Hudson Strait region pre-Heinrich event 4 (H-4) and, that on the basis of characteristics of the sediment unit, Heinrich event-4 was different than Heinrich events 1 or 2 (i.e., larger ice sheet collapse(?), longer duration(?), "dirtier" icebergs(?)). Other data from across the southern and eastern margin of the Laurentide Ice Sheet, as well as Greenland and the North Atlantic, support this interpretation, possibly indicating a relative mid-Wisconsin glacial maximum pre-Heinrich event 4. Many of these data also indicate that Heinrich event 4 (35 ka) resulted in serious climatic and oceanographic reorganizations. We suggest that Heinrich event 4 gutted the Hudson Strait, leaving it devoid of ice for Heinrich event 3. We further hypothesize that Heinrich event 3 did not originate from axial ice transport along the Hudson Strait; thus Heinrich event 3 may be more analogous to the proposed northward advancing ice from Ungava Bay during Heinrich event 0 than to the more typical down-the-strait flow during H-1, H-2, and H-4. Consequently, the climatic and oceanographic impacts resulting from Heinrich events are highly susceptible to the type, origin, and magnitude of ice sheet collapse, something which varied per Heinrich event during the last glacial period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thick, late Quaternary sediment sections were recovered at several sites on the leeward slope of Great Bahama Bank during Leg 166 of the Ocean Drilling Program. These sections have paleoceanographic records with potentially high temporal resolution. To make an initial assessment of the records corresponding to the Holocene highstand of sea level, we have identified and dated the sediments from the four upper slope sites (1004, 1005, 1008, and 1009) that were deposited during the period of time which spans the last glaciation through the Holocene. Age identifications are based upon the abundances of the Globorotalia menardii complex of planktonic foraminifera, the stable oxygen isotopic ratios of bulk sediment and the planktonic foraminifera Globogerinoides ruber, and AMS C-14 dating of bulk sediment. Comparison of these data with the sediment lithologic and geoacoustic properties shows that consistent stratigraphic relationships exist at each site: The uppermost interval of aragonite-rich sediments corresponds to the Holocene highstand of sea level (i.e. oxygen isotope stage 1) and these sediments are underlain by a relatively thin interval of aragonite-poor, partially lithified sediments which corresponds to the last glaciation when sea level was significantly lower than today (i.e. oxygen isotope stages 2-4). The Leg 166 upper slope sites possess carbonate accumulation and paleoceanographic proxy records with very high temporal resolution, with Sites 1004, 1008, and 1009 appearing to have the greatest stratigraphic integrity. Comparison of core and high-resolution seismic profile data establishes the Holocene nature of the uppermost seismic unit in the stratigraphic package of the western slope of Great Bahama Bank.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A multiproxy record has been acquired from a piston core (SO139-74KL) taken offshore southern Sumatra, an area which is situated in the southwestern sector of the tropical Indo-Pacific Warm Pool. The high-resolution data sets (X-ray fluorescence, total organic carbon, and C37 alkenones) were used to track changes in paleoproductivity, freshwater budget, and sea surface temperature (SST) of the tropical climate system at orbital time scales over the past 300 ka. Our paleoclimatic data show that enhanced marine paleoproductivity was directly related to strengthening of coastal upwelling during periods of increased boreal summer insolation and associated SE monsoon strength with a precessional cyclicity. Changes in freshwater supply were primarily forced by precession-controlled changes in boreal NW winter monsoon rainfall enclosing an additional sea level component. SST variations of 2°-5°C occurred at eccentricity and precessional cyclicity. We suggest that the sea surface temperature variability off southern Sumatra is predominantly related to three major causes: (1) variations in upwelling intensity; (2) an elevated freshwater input into the southern Makassar Strait leading to reduced supply of warmer surface waters from the western Pacific and increased subsurface water transport via the Indonesian Throughflow into the Indian Ocean; and (3) long-term changes in the intensity or frequency of low-latitude climate phenomena, such as El Niño-Southern Oscillation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most seafloor sediments are dated with radiocarbon, and the sediment is assumed to be zero-age (modern) when the signal of atmospheric testing of nuclear weapons is present (Fraction modern (Fm) > 1). Using a simple mass balance, we show that even with Fm > 1, half of the planktonic foraminifera at the seafloor can be centuries old, because of bioturbation. This calculation, and data from four core sites in the western North Atlantic indicate that, first, during some part of the Little Ice Age (LIA) there may have been more Antarctic Bottom Water than today in the deep western North Atlantic. Alternatively, bioturbation may have introduced much older benthic foraminifera into surface sediments. Second, paleo-based warming of Sargasso Sea surface waters since the LIA must lag the actual warming because of bioturbation of older and colder foraminifera.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A key constraint in attempts to reconstruct the patterns and rates of the ocean's thermohaline circulation during the last glacial period is the difference between the 14C to C ratio in surface and deep water. While imperfect, it is our best index of past deep-sea ventilation rates. In this paper we review published ventilation rate estimates based on the measured radiocarbon age difference between coexisting benthic and planktic foraminifera from glacial-age Pacific sediments. We also present new results from a series of eastern equatorial Pacific sediment cores. The conclusion is that the scatter in these results is so large that the apparent 14C age of glacial deep Pacific water could lie anywhere between double and half today's. Further, it is not clear what is responsible for the wide scatter in the radiocarbon results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high-resolution multiparameter stratigraphy allows the identification of late Quaternary glacial and interglacial cycles in a central Arctic Ocean sediment core. Distinct sandy layers in the upper part of the otherwise fine-grained sediment core from the Lomonosov Ridge (lat 87.5°N) correlate to four major glacials since ca. 0.7 Ma. The composition of these ice-rafted terrigenous sediments points to a glaciated northern Siberia as the main source. In contrast, lithic carbonates derived from North America are also present in older sediments and indicate a northern North American glaciation since at least 2.8 Ma. We conclude that large-scale northern Siberian glaciation began much later than other Northern Hemisphere ice sheets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Continental margin sediments off Nova Scotia accumulate at high rates (up to 360 cm/kyr) and contain a history of millennial-scale environmental changes which are dominated by the proximity of the Laurentide ice sheet during the latest Quaternary. Using stable isotope ratios of oxygen, accelerator mass spectrometer radiocarbon dating, micropaleontology, and sedimentology, we document these changes in six piston cores ranging in water depth from ab. 450 to ab. 4300 m. We find that maximum d18O in N. pachyderma occurred about 15 ka and preceded the maximum abundance of this species in these cores by ab. 1000 years. Between 13 and 14 ka we find a second peak in abundance of N. pachyderma, minimum d18O, and two pulses of ice rafting. The sediment lithology supports terrestrial studies which indicate that there was a general withdrawal of ice beyond the upper Paleozoic and Mesozoic red beds by 14 ka in southeastern Canada, so the ice rafting events between 13 and 14 ka probably reflect ice stream activity in the St. Lawrence valley. The Younger Dryas event is recognized as a peak in abundance of N. pachyderma and ice rafting (dated as ab. 11.3 ka), but meltwater discharge to the Gulf of St. Lawrence was either too small or occurred over too long a time to leave a distinct d18O minimum off Nova Scotia. At 7.1 ka, in the middle of Holocene warming, we find a third peak in abundance of N. pachyderma and another d18O minimum but no ice rafting. We interpret these data as evidence of a late-occurring meltwater event which, if correct, could have originated in the Great Lakes, in the Labrador-Ungava region, or in both. The final millennial-scale phenomenon off Nova Scotia is the onset of "Neoglaciation," marked by increased ice rafting and increased % N. pachyderma beginning about 5 kyr ago.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dansgaard-Oeschger (D-O) cycles are the most dramatic, frequent, and wide-reaching abrupt climate changes in the geologic record. On Greenland, D-O cycles are characterized by an abrupt warming of 10 ± 5°C from a cold stadial to a warm interstadial phase, followed by gradual cooling before a rapid return to stadial conditions. The mechanisms responsible for these millennial cycles are not fully understood but are widely thought to involve abrupt changes in Atlantic Meridional Overturning Circulation due to freshwater perturbations. Here we present a new, high-resolution multiproxy marine sediment core monitoring changes in the warm Atlantic inflow to the Nordic seas as well as in local sea ice cover and influx of ice-rafted debris. In contrast to previous studies, the freshwater input is found to be coincident with warm interstadials on Greenland and has a Fennoscandian rather than Laurentide source. Furthermore, the data suggest a different thermohaline structure for the Nordic seas during cold stadials in which relatively warm Atlantic water circulates beneath a fresh surface layer and the presence of sea ice is inferred from benthic oxygen isotopes. This implies a delicate balance between the warm subsurface Atlantic water and fresh surface layer, with the possibility of abrupt changes in sea ice cover, and suggests a novel mechanism for the abrupt D-O events observed in Greenland ice cores.