959 resultados para automation, palynology, pollen counting, pollen identification, protocols
Resumo:
Palynological investigation of the marine core, GeoB1008-3, from near the mouth of the Congo river (6°35.6'S/10°19.1'E), provides information about the changes in vegetation and climate in West Equatorial Africa during the last 190 ka. The pollen diagram is divided into zones 1-6 which are considered to correspond in time with the marine isotope stages 1-6. Oscillations in temperature and moisture are indicated during the cold stage 6. During stage 5, two cooler periods (5d and 5b) can be shown with an expansion of Podocarpus forests to lower elevations on the expense of lowland rain forest. Extended mangrove swamps existed along the coast in times of high sea level (stages 5 and 1).
Resumo:
Palynological data of the marine core M 16415-2 show latitudinal shifts of the northern fringe of the tropical rain forest in north-west Africa during the last 700 ka. Savanna and dry open forest expanded southwards and tropical rain forest expanded northwards during dry and humid periods, respectively. Until 220 ka B.P., the tropical rain forest probably kept its zonal character in West Africa during glacials and interglacials. It is only during the last two glacial periods that the rain forest possibly fragmented into refugia. Throughout the Brunhes chron, pollen and spore transport was mainly by trade winds.
Resumo:
Past changes in plant and landscape diversity can be evaluated through pollen analysis, however, pollen based diversity indexes are potentially biased by differential pollen production and deposition. Studies examining the relationship between pollen and landscape diversity are therefore needed. The aim of this study is to evaluate how different pollen based indexes capture aspects of landscape diversity. Pollen counts were obtained from surface samples of 50 small to medium sized lakes in Brandenburg (Northeast Germany) and compiled into two sets, with one containing all pollen counts from terrestrial plants and the second restricted to wind-pollinated taxa. Both sets were adjusted for the pollen production/dispersal bias using the REVEALS model. A high resolution biotope map was used to extract the density of total biotopes and different biotopes per area as parameters describing landscape diversity. In addition tree species diversity was obtained from forest inventory data. The Shannon index and the number of taxa in a sample of 10 pollen grains are highly correlated and provide a useful measure of pollen type diversity which corresponds best to landscape diversity within one km of the lake and the proportion of non-forested area within seven km. Adjustments of the pollen production/dispersal bias only slightly improve the relationships between pollen diversity and landscape diversity for the restricted dataset as well as for the forest inventory data and corresponding pollen types. Using rarefaction analysis, we propose the following convention: pollen type diversity is represented by the number of types in a small sample (low count e.g. 10), pollen type richness is the number of types in a large sample (high count e.g. 500) and pollen sample evenness is characterized by the ratio of the two. Synthesis. Pollen type diversity is a robust index that captures vegetation structure and landscape diversity. It is ideally suited for between site comparisons as it does not require high pollen counts. In concert with pollen type richness and evenness, it helps evaluating the effect of climate change and human land use on vegetation structure on long timescales.
Resumo:
A 415cm thick permafrost peat section from the Verkhoyansk Mountains was radiocarbon-dated and studied using palaeobotanical and sedimentological approaches. Accumulation of organic-rich sediment commenced in a former oxbow lake, detached from a Dyanushka River meander during the Younger Dryas stadial, at ~12.5 kyr BP. Pollen data indicate that larch trees, shrub alder and dwarf birch were abundant in the vegetation at that time. Local presence of larch during the Younger Dryas is documented by well-preserved and radiocarbon-dated needles and cones. The early Holocene pollen assemblages reveal high percentages of Artemisia pollen, suggesting the presence of steppe-like communities around the site, possibly in response to a relatively warm and dry climate ~11.4-11.2 kyr BP. Both pollen and plant macrofossil data demonstrate that larch woods were common in the river valley. Remains of charcoal and pollen of Epilobium indicate fire events and mark a hiatus ~11.0-8.7 kyr BP. Changes in peat properties, C31/C27 alkane ratios and radiocarbon dates suggest that two other hiatuses occurred ~8.2-6.9 and ~6.7-0.6 kyr BP. Prior to 0.6 kyr BP, a major fire destroyed the mire surface. The upper 60 cm of the studied section is composed of aeolian sands modified in the uppermost part by the modern soil formation. For the first time, local growth of larch during the Younger Dryas has been verified in the western foreland of the Verkhoyansk Mountains (~170km south of the Arctic Circle), thus increasing our understanding of the quick reforestation of northern Eurasia by the early Holocene.
Resumo:
The region D-s (Fig. 15.8) belongs to the Weichselian glaciated area of the North German lowlands and is a section of the older part of the young moraine landscape. The Warsaw-Berlin Urstromtal with the Spree River and the Havel lake-river system subdivide the region into four subregions, including a northern, southern and western ground moraine plateau. The region as a whole comprises the former West-Berlin, surrounded by the late GDR.
Resumo:
A palynological study of a 15 m sediment core from the centre of Lake Wollingst (water depth 14,5 m) is presented. The pollen record shows 3 lateglacial thermomers, called Meiendorf, Bölling, Alleröd and the early holocene Friesland-Thermomer. The succession of forest vegetation taking place on the lake surroundings during the Holocene was typical for older moraine soils which are poor in nutrients: forest vegetation started with birch and pine, followed by hazel, oak and elm in the Boreal and by alder, lime and ash-tree in the Atlantic. Beech and hornbeam reached the area during Subboreal. However, due to the poor soils they spread out only after the Iron Age. With the deforestation during the medieval time the lake lost its character of a primeval forest lake. Lake Wollingst was oligotrophic since its origin at the end of the Pleniglacial. After medieval forest-clearing the lake has changed its quality of water particularly in connection with hemp- and flax-rotting. The modem sediments in this profile are completely disturbed. They contain reworked material, a lot of blue-green algae and remains of Bosmina longirostris indicating eutrophic conditions.
Resumo:
Cryolithological, ground ice and fossil bioindicator (pollen, diatoms, plant macrofossils, rhizopods, insects, mammal bones) records from Bol'shoy Lyakhovsky Island permafrost sequences (73°20'N, 141°30'E) document the environmental history in the region for the past c. 115 kyr. Vegetation similar to modern subarctic tundra communities prevailed during the Eemian/Early Weichselian transition with a climate warmer than the present. Sparse tundra-like vegetation and harsher climate conditions were predominant during the Early Weichselian. The Middle Weichselian deposits contain peat and peaty soil horizons with bioindicators documenting climate amelioration. Although dwarf willows grew in more protected places, tundra and steppe vegetation prevailed. Climate conditions became colder and drier c. 30 kyr BP. No sediments dated between c. 28.5 and 12.05 14C kyr BP were found, which may reflect active erosion during that time. Herb and shrubby vegetation were predominant 11.6-11.3 14C kyr BP. Summer temperatures were c. 4 °C higher than today. Typical arctic environments prevailed around 10.5 14C kyr BP. Shrub alder and dwarf birch tundra were predominant between c. 9 and 7.6 kyr BP. Reconstructed summer temperatures were at least 4 °C higher than present. However, insect remains reflect that steppe-like habitats existed until c. 8 kyr BP. After 7.6 kyr BP, shrubs gradually disappeared and the vegetation cover became similar to that of modern tundra. Pollen and beetles indicate a severe arctic environment c. 3.7 kyr BP. However, Betula nana, absent on the island today, was still present. Together with our previous study on Bol'shoy Lyakhovsky Island covering the period between about 200 and 115 kyr, a comprehensive terrestrial palaeoenvironmental data set from this area in western Beringia is now available for the past two glacial-interglacial cycles.