999 resultados para Cibicidoides kullenbergi, d13C
Resumo:
The distribution of deep-sea benthonic foraminifera in core top samples from the southwest Indian Ocean is examined. Principal component analysis reveals two major assemblages. One assemblages between 3600 and 4800-m water depth is dominated by Episominella umbonifera and is associated with cold (Theta = -0.3 to 0.8°C), low salinity (34.66 to 34.72 * 10**-3) Antarctic Bottom Water in the Crozet Basin, in fracture zones, and on the flanks of the Southwest Indian Ridge. A second assemblage, dominated by Planulina wuellerstorfi, Globocassidulina subglobasa, Astrononion echolsi and Pullenia bulloides, is between 1600 and 3800 m on the Crozet Plateau, Madagascar Ridge, Central Indian Ridge, and Southwest Indian Ridge and is associated with relatively warm (Theta = 0.8 to 2.6°C), high salinity (34.72 to 34.76 * 10**-3) North Atlantic Deep Water. The third principal component divides the P. wuellerstorfi assemblage into two subgroups. One is dominated by Epistominella exigua, P. bulloides, P. wuellerstorfi, and A. echolsi and a second is dominated by G. subglobosa. The distribution of the E. umbonifera assemblage and previous hydrographic studies suggest that AABW flows as a western boundary contour current in the Crozet Basin and penetrates fracture zones in the Southwest Indian Ridge between 55 and 57°E and near 66°E as it travels northward into the Madagascar and Mascarene basins. The faunal-water mass associations from the southeast Indian Ocean are compared; the most notable faunal difference is the absence of Uvigerina as a dominant taxon in the southwest Indian Ocean. A comparison of dissolved oxygen and Uvigerina data shows that oxygen is not a major influence upon the distribution of Uvigerina. A correlation analysis of the faunal data and water depth, potential temperature, in situ temperature, salinity, dissolved oxygen, and 1 - Omega, an index of calcium carbonate undersaturation, was carried out to determine the relationships between fauna and hydrography. The second principal component has a significant positive correlation at the 99.9% level with temperature and negative correlations with water depth and 1 - Omega. A general faunal-water mass correlation exists, but it is not possible to determine which variable controls the faunal distributions.
Resumo:
Here we present a case study of three cold-water coral mounds in a juvenile growth stage on top of the Pen Duick Escarpment in the Gulf of Cadiz; Alpha, Beta and Gamma mounds. Although cold-water corals are a common feature on the adjacent cliffs, mud volcanoes and open slope, no actual living cold-water coral has been observed. This multidisciplinary and integrated study comprises geophysical, sedimentological and (bio)geochemical data and aims to present a holistic view on the interaction of both environmental and geological drivers in cold-water coral mound development in the Gulf of Cadiz. Coring data evidences (past or present) methane seepage near the Pen Duick Escarpment. Several sources and pathways are proposed, among which a stratigraphic migration through uplifted Miocene series underneath the escarpment. The dominant morphology of the escarpment has influenced the local hydrodynamics within the course of the Pliocene, as documented by the emplacement of a sediment drift. Predominantly during post-Middle Pleistocene glacial episodes, favourable conditions were present for mound growth. An additional advantage for mound formation near the top of Pen Duick Escarpment is presented by seepage-related carbonate crusts which might have offered a suitable substrate for coral settling. The spatially and temporally variable character and burial stage of the observed open reef frameworks, formed by cold-water coral rubble, provides a possible model for the transition from cold-water coral reef patches towards juvenile mound. These rubble "graveyards" not only act as sediment trap but also as micro-habitat for a wide range of organisms. The presence of a fluctuating Sulphate-Methane Transition Zone has an important effect on early diagenetic processes, affecting both geochemical and physical characteristics, transforming the buried reef into a solid mound. Nevertheless, the responsible seepage fluxes seem to be locally variable. As such, the origin and evolution of the cold-water coral mounds on top of the Pen Duick Escarpment is, probably more than any other NE Atlantic cold-water coral mound province, located on the crossroads of environmental (hydrodynamic) and geological (seepage) pathways.
Resumo:
To better understand the links between the carbon cycle and changes in past climate over tectonic timescales we need new geochemical proxy records of secular change in silicate weathering rates. A number of proxies are under development, but some of the most promising (e.g. palaeoseawater records of Li and Nd isotope change) can only be employed on such large samples of mono-specific foraminifera that application to the deep sea sediment core archive becomes highly problematic. "Dentoglobigerina" venezuelana presents a potentially attractive target for circumventing this problem because it is a typically large (> 355 ?m diameter), abundant and cosmopolitan planktic foraminifer that ranges from the early Oligocene to early Pliocene. Yet considerable taxonomic and ecological uncertainties associated with this taxon must first be addressed. Here, we assess the taxonomy, palaeoecology, and ontogeny of "D." venezuelana using stable isotope (oxygen and carbon) and Mg/Ca data measured in tests of late Oligocene to early Miocene age from Ocean Drilling Program (ODP) Site 925, on Ceara Rise, in the western equatorial Atlantic. To help constrain the depth habitat of "D." venezuelana relative to other species we report the stable isotope composition of selected planktic foraminifera species within Globigerina, Globigerinoides, Paragloborotalia and Catapsydrax. We define three morphotypes of "D." venezuelana based on the morphology of the final chamber and aperture architecture. We determine the trace element and stable isotope composition of each morphotype for different size fractions, to test the validity of pooling these morphotypes for the purposes of generating geochemical proxy datasets and to assess any ontogenetic variations in depth habitat. Our data indicate that "D." venezuelana maintains a lower thermocline depth habitat at Ceara Rise between 24 and 21 Ma. Comparing our results to published datasets we conclude that this lower thermocline depth ecology for the Oligo-Miocene is part of an Eocene-to-Pliocene evolution of depth habitat from surface to sub-thermocline for "D." venezuelana. Our size fraction data advocate the absence of photosymbionts in "D." venezuelana and suggest that juveniles calcify higher in the water column, descending into slightly deeper water during the later stages of its life cycle. Our morphotype data show that d18O and d13C variation between morphotypes is no greater than within-morphotype variability. This finding will permit future pooling of morphotypes in the generation of the "sample hungry" palaeoceanographic records.
Resumo:
Live (Rose Bengal stained) and dead benthic foraminifera of surface and subsurface sediments from 25 stations in the eastern South Atlantic Ocean and the Atlantic sector of the Southern Ocean were analyzed to decipher a potential influence of seasonally and spatially varying high primary productivity on the stable carbon isotopic composition of foraminiferal tests. Therefore, stations were chosen so that productivity strongly varied, whereas conservative water mass properties changed only little. To define the stable carbon isotopic composition of dissolved inorganic carbon (d13CDIC) in ambient water masses, we compiled new and previously published d13CDIC data in a section running from Antarctica through Agulhas, Cape and Angola Basins, via the Guinea Abyssal Plain to the Equator. We found that intraspecific d13C variability of all species at a single site is constantly low throughout their distribution within the sediments, i.e. species specific and site dependent mean values calculated from all subbottom depths on average only varied by +/-0.09 per mil. This is important because it makes the stable carbon isotopic signal of species independent of the particular microhabitat of each single specimen measured and thus more constant and reliable than has been previously assumed. So-called vital and/or microhabitat effects were further quantified: (1) d13C values of endobenthic Globobulimina affinis, Fursenkoina mexicana, and Bulimina mexicana consistently are by between -1.5 and -1.0 per mil VPDB more depleted than d13C values of preferentially epibenthic Fontbotia wuellerstorfi, Cibicidoides pachyderma, and Lobatula lobatula. (2) In contrast to the Antarctic Polar Front region, at all stations except one on the African continental slope Fontbotia wuellerstorfi records bottom water d13CDIC values without significant offset, whereas L. lobatula and C. pachyderma values deviate from bottom water values by about -0.4 per mil and -0.6 per mil, respectively. This adds to the growing amount of data on contrasting cibicid d13C values which on the one hand support the original 1:1-calibration of F. wuellerstorfi and bottom water d13CDIC, and on the other hand document severe depletions of taxonomically close relatives such as L. lobatula and C. pachyderma. At one station close to Bouvet Island at the western rim of Agulhas Basin, we interpret the offset of -1.5 per mil between bottom water d13CDIC and d13C values of infaunal living Bulimina aculeata in contrast to about -0.6 +/- 0.1 per mil measured at eight stations close-by, as a direct reflection of locally increased organic matter fluxes and sedimentation rates. Alternatively, we speculate that methane locally released from gas vents and related to hydrothermal venting at the mid-ocean ridge might have caused this strong depletion of 13C in the benthic foraminiferal carbon isotopic composition. Along the African continental margin, offsets between deep infaunal Globobulimina affinis and epibenthic Fontbotia wuellerstorfi as well as between shallow infaunal Uvigerina peregrina and F. wuellerstorfi, d13C values tend to increase with generally increasing organic matter decomposition rates. Although clearly more data are needed, these offsets between species might be used for quantification of biogeochemical paleogradients within the sediment and thus paleocarbon flux estimates. Furthermore, our data suggest that in high-productivity areas where sedimentary carbonate contents are lower than 15 weight %, epibenthic and endobenthic foraminiferal d13C values are strongly influenced by 13C enrichment probably due to carbonate-ion undersaturation, whereas above this sedimentary carbonate threshold endobenthic d13C values reflect depleted pore water d13CDIC values.
Resumo:
The interglacial known as Marine Isotope Stage 11 has been proposed to be analogous to the Holocene, owing to similarities in the amplitudes of orbital forcing. It has been difficult to compare the periods, however, because of the long duration of Stage 11 and a lack of detailed knowledge of any extreme climate events that may have occurred. Here we use the distinctive phasing between seasurface temperatures and the oxygen-isotope records of benthic foraminifera in the southeast Atlantic Ocean to stratigraphically align the Holocene interglacial with the first half of the Marine Isotope Stage 11 interglacial optimum. This alignment suggests that the second half of Marine Isotope Stage 11 should not be used as a reference for 'pre-anthropogenic' greenhouse-gas emissions. By compiling benthic carbon-isotope records from sites in the Atlantic Ocean on a single timescale, we also find that meridional overturning circulation strengthened about 415,000 years ago, at a time of high orbital obliquity. We propose that this mechanism transported heat to the high northern latitudes, inhibiting significant ice-sheet build-up and prolonging interglacial conditions. We suggest that this mechanism may have also prolonged other interglacial periods throughout the past 800,000 years.
Resumo:
A record of deep-sea calcite saturation (D[CO3**-2]), derived from X-ray computed tomography-based foraminifer dissolution index, XDX, was constructed for the past 150 ka for a core from the deep (4157 m) tropical western Indian Ocean. G. sacculifer and N. dutertrei recorded a similar dissolution history, consistent with the process of calcite compensation. Peaks in calcite saturation (~15 µmol/kg higher than the present-day value) occurred during deglaciations and early in MIS 3. Dissolution maxima coincided with transitions to colder stages. The mass record of G. sacculifer better indicated preservation than did that of N. dutertrei or G. ruber. Dissolution-corrected Mg/Ca-derived SST records, like other SST records from marginal Indian Ocean sites, showed coolest temperatures of the last 150 ka in early MIS 3, when mixed layer temperatures were ~4°C lower than present SST. Temperatures recorded by N. dutertrei showed the thermocline to be ~4°C colder in MIS 3 compared to the Holocene (8 ka B.P.).
Resumo:
The carbon isotopic composition of individual plant leaf waxes (a proxy for C3 vs. C4 vegetation) in a marine sediment core collected from beneath the plume of Sahara-derived dust in northwest Africa reveals three periods during the past 192,000 years when the central Sahara/Sahel contained C3 plants (likely trees), indicating substantially wetter conditions than at present. Our data suggest that variability in the strength of Atlantic meridional overturning circulation (AMOC) is a main control on vegetation distribution in central North Africa, and we note expansions of C3 vegetation during the African Humid Period (early Holocene) and within Marine Isotope Stage (MIS) 3 (approx. 50-45 ka) and MIS 5 (approx. 120-110 ka). The wet periods within MIS 3 and 5 coincide with major human migration events out of sub-Saharan Africa. Our results thus suggest that changes in AMOC influenced North African climate and, at times, contributed to amenable conditions in the central Sahara/Sahel, allowing humans to cross this otherwise inhospitable region.
Resumo:
We analyzed the oxygen and carbon isotopic composition of planktonic and benthic foraminifers picked from 13 late Eocene to late Oligocene samples from DSDP Site 540 (23°49.73'N, 84°22.25'W, 2926 m water depth) from the Gulf of Mexico. An enrichment occurs in 18O of about 0.5 to 0.8 per mil in both benthic foraminifers and surface-dwelling planktonic foraminifers between the latest Eocene and early Oligocene. This early Oligocene maximum is followed by lower 18O values. A 1.2 per mil d13C decrease in both benthic and planktonic foraminiferal data occurs from the late Eocene to the late Oligocene. There is a correspondence of the 13C signal to deep-sea records; however, the amplitude of this change is greater than previously seen in deep-sea cores, possibly as a result of proximity to terrestrial sources of carbon. The covarying isotopic changes in both benthic and planktonic foraminifers suggest global causes, such as ice volume increases and increased terrestrial carbon input to the ocean. However, during the latter part of the record (early-late Oligocene), the increases in the benthic 18O without accompanying increases observed with planktonic foraminifers suggest that changes in only one part of the system occurred; one potential explanation being a decrease in bottom-water temperatures without concomitant changes in the surface waters. The 18O differences between species of planktonic foraminifers and the difference between planktonic and benthic 18O data indicate that diagenesis problems are minimal. These preliminary results are encouraging given that these cores are partially lithified.