994 resultados para delta 18O, stacked


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Delta180 and 87Sr/86Sr isotopic data from smectites, calcites, and whole rocks, together with published isotopic age determinations, alkali element concentration data and petrographic observations suggest a sequential model of ocean floor alteration. The early stage lasts about 3 m.y. and is characterized by palagonite and smectite formation, and solutions with a large basaltic component, increasing with temperature which varies from 15° to 80° C at DSDP site 418A. Most carbonates are deposited after this stage from solutions with a negligible basaltic Sr component and temperatures of 15° to 40° C. Water of seawater Sr and O isotopic composition is shown to percolate to at least 500 m into the basaltic basement. No evidence was found for continuing exchange of strontium or oxygen after 3 m.y.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Geochemical analyses of the middle Eocene through lower Oligocene lithologic Unit IIIC (260-518 meters below seafloor [mbsf]) indicate a relatively constant geochemical composition of the detrital fraction throughout this depositional interval at Ocean Drilling Program (ODP) Site 647 in the southern Labrador Sea. The main variability occurs in redox-sensitive elements (e.g., iron, manganese, and phosphorus), which may be related to early diagenetic mobility in anaerobic pore waters during bacterial decomposition of organic matter. Initial preservation of organic matter was mediated by high sedimentation rates (36 m/m.y.). High iron (Fe) and manganese (Mn) contents are associated with carbonate concretions of siderite, manganosiderite, and rhodochrosite. These concretions probably formed in response to elevated pore-water alkalinity and total dissolved carbon dioxide (CO2) concentrations resulting from bacterial sulfate reduction, as indicated by nodule stable-isotope compositions and pore-water geochemistry. These nodules differ from those found in upper Cenozoic hemipelagic sequences in that they are not associated with methanogenesis. Phosphate minerals (carbonate-fluorapatite) precipitated in some intervals, probably as the result of desorption of phosphorus from iron and manganese during reduction. The bulk chemical composition of the sediments differs little from that of North Atlantic Quaternary abyssal red clays, but may contain a minor hydrothermal component. The silicon/ aluminum (Si/Al) ratio, however, is high and variable and probably reflects original variations in biogenic opal, much of which is now altered to smectite and/or opal CT. An increase in the sodium/potassium (Na/K) ratio in the upper Eocene corresponds to the beginning of coarsergrained feldspar flux to the site, possibly marking the onset of more vigorous deep currents. Although the Site 647 cores provide a nearly complete high-resolution, high-latitude Eocene-Oligocene record, the high sedimentation rate and somewhat unusual diagenetic conditions have led to variable alteration of benthic foraminifers and fine-fraction carbonate and have overprinted the original stable-isotope records. Planktonic foraminifers are less altered, but on the whole, there is little chance of sorting out the nature and timing of environmental change on the basis of our stable-isotope analyses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Oxygen isotope values from calcareous nannofossils in four cores spanning the Quaternary from DSDP Site 593 in Tasman Sea are compared with the delta18O signal of planktonic and benthic foraminifers from the same samples. The classic mid-late Quaternary isotope stages are exhibited with stage 12 particularly well developed. When delta18O values of nannofossils are adjusted for coccolithophore vital effects they indicate larger (by 1-6°C) surface to bottom paleotemperature gradients and greater (by 1-3°C) changes in mean sea-surface temperature between full glacial and interglacial conditions than do delta18O values from planktonic foraminifers. Along with the foraminifers, the nannofossils record a bimodal distribution of delta18O between the early and mid-late Quaternary, indicating a significant change in global ice budget. The delta13C of nannofossils also shows a bimodal distribution, but is opposite to that for the foraminifers. Nannofossil delta18O values record a shift of c. -0.8? at isotope stage 8 corresponding to a major reduction in abundance of the previously dominant gephyrocapsids. A shift in delta13C of c. -1.5? also occurs at stage 8, and a shift in delta13C of c. +1.2? at around stage 14. The delta18O shift in nannofossils is at least a Pacific-wide phenomenon; the delta13C shifts are possibly global. The delta13C signal of nannofossils exhibits an antipathetic relationship to that of benthic foraminifers back to isotope stage 18 but no significant correlation beyond this level to the base of the Quaternary. This is interpreted as reflecting local productivity dominating global influences on delta13C since stage 18 at DSDP Site 593. The difference between nannofossil and benthic foraminifer delta13C signals (Delta13C) tends to be maximum during glacial stages and minimum during interglacials throughout the section, showing a strong correlation with the nannofossil delta180 signal. The increased partitioning of 13C between surface and bottom waters during the glacial periods may indicate heightened productivity in surface waters in the southern Tasman Sea at these times.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A stable-isotope stratigraphy at Site 846 (tropical Pacific, 3°06'S, 90°49'W, 3307 m water depth), based on the benthic foraminifers Cibicides wuellerstorfi and Uvigerina peregrina, yields a high-resolution record of deep-sea delta18O and delta13C over the past 1.8 Ma, with an average sampling interval of 3 k.y. Variance in the delta18O and delta13C records is concentrated in the well-known orbital periods of 100, 41, and 23 k.y. In the 100-k.y. band, both isotopic signals grow from relatively low amplitudes prior to 1.2 Ma, to high amplitudes in the late Quaternary since 0.7 Ma. The amplitude of delta18O and especially of delta13C decreases in the 41-k.y. band as it grows in the 100-k.y. band, consistent with a transfer of energy into an orbitally-paced internal oscillation. A weak 30-k.y. rhythm, present in both delta18O and delta13C, may reflect nonlinear interaction between the 41-k.y. and 100-k.y. bands in the evolving climate system. In the 23-k.y. and 19-k.y. bands associated with orbital precession, delta18O and delta13C are not coherent with each other on long time scales, and do not evolve like the 100-k.y. and 41-k.y. bands. This suggests that the source of the growing 100-k.y. oscillation is not a nonlinear response to precession, in contrast to predictions of some climate models. Sedimentation rates at this site also vary with a strong 100-k.y. cycle. Unlike the isotope records, the amplitude of 100-k.y. variations in sedimentation rate is relatively constant over the past 1.8 Ma, ranging from about 15 to 70 m/m.y. Prior to 0.9 Ma, sedimentation rates co-vary with orbital eccentricity, rather than with global climate as reflected by delta18O or delta13C. A source of this 100-k.y. cycle of sedimentation rate in the absence of similar ice volume fluctuations may be precessional heating of equatorial land masses, which in an energy balance climate model drives variations of monsoonal climates with a 100-k.y. rhythm. For the interval younger than 0.9 Ma, high sedimentation rates in the 100-k.y. band are consistently associated with glacial stages. This change of pattern suggests that when the amplitude of glacial cycles become large enough, their global effects overpower a local monsoon-driven variation in sedimentation rate at Site 846.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mineralogical and oxygen isotopic analyses of samples from Deep Sea Drilling Project Sites 477, 481, and 477 in the Guaymas Basin indicate the existence of two distinct hydrothermal systems. In the first, at Sites 481 and 478, hot dolerite sills intruded into highly porous hemipelagic siliceous mudstones that were moderately rich in organic matter, thermally altered the adjacent sediments, and expelled hydrothermal pore fluids. The second, at Site 477 and active at present, is most probably caused by a recent igneous intrusion forming a magma chamber at shallow depth. In the first hydrothermal system, the main thermal reactions above and below the sills are dissolution of opal-A and formation of quartz, either directly or through opal-CT; formation of smectite; formation of analcime only above the sills; dissolution and recrystallization of calcite and occasional formation of dolomite or protodolomite. The d18O values of the hydrothermally altered sediments range from 9.9 to 12.2 per mil (SMOW). The d18O values of recrystallized calcites above the first sill complex, Site 481, indicate temperatures of 140° to 170°C. No fluid recharge is required in this system. The thickness of the sill complexes and the sequence and depth of intrusion into the sediment column determine the thickness of the alteration zones, which ranges from 2 or 3 to approximately 50 meters. Generally, the hydrothermally altered zone is thicker above than below the sill. In the second type, the sediments are extensively recrystallized. The characteristic greenschist-facies mineral assemblage of quartz-albite-chlorite-epidote predominates. Considerable amounts of pyrite, pyrrhotite, and sphene are also present. The lowest d18O value of the greenschist facies rocks is 6.6 per mil, and the highest d18O value of the associated pore fluids is +1.38 per mil (SMOW). The paragenesis and the oxygen isotopes of individual phases indicate alteration temperatures of 300 ± 50°C. On the basis of the oxygen isotopes of the solids and associated fluids, it is concluded that recharge of fluids is required. The water/rock ratio in wt.% is moderate, approximately 2/1 to 3/1 - higher than the calculated water/rock ratio of the hydrothermal system at the East Pacific Rise, 21 °N.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Narrow-spaced oxygen and carbon stable isotope records of the planktonic foraminifer Globigerinoides ruber (white) were obtained at Ocean Drilling Program Leg 184 Site 1144 to establish a first record of high-resolution Pleistocene monsoon variability on orbital to centennial timescales in the northern South China Sea. The new records extend from the Holocene back to marine isotope Stage (MIS) 34 (1.1 Ma). Sedimentation rates average 0.56 m/k.y. for the upper Matuyama and Brunhes Chrons and increase to 1.8 m/k.y. over the last 100 k.y. Stable isotope records thus reach an average time resolution of 270-500 yr for the last 375 k.y. and 570 yr further back to 700 ka. On the other hand, major stratigraphic gaps were identified for peak warm Stages 5.5, 7.5 (down to 8.4), 11.3, and 15.5. These gaps probably resulted from short-lasting events of contour current erosion induced by short-term enhanced incursions of Upper Pacific Deep Water near the end of glacial terminations. A further major hiatus extends from MIS 34 to MIS 73(?). The long-term variations in monsoon climate were largely dominated by the 100-k.y. eccentricity cycle. Planktonic delta13C values culminated near 30, 480, and 1035 ka and reflect an overlying 450-k.y. eccentricity cycle of minimum nutrient concentrations in the surface ocean. Superimposed on the orbital variations, millennial-scale cycles were prominent throughout the last 700 k.y., mainly controlled by short-term changes in monsoon-driven precipitation and freshwater input from mainland China. During the last 110 k.y. these short-lasting oscillations closely match the record of 1500-yr Dansgaard-Oeschger climate cycles in the Greenland ice core record.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A long-standing question in Paleogene climate concerns the frequency and mechanism of transient greenhouse gas-driven climate shifts (hyperthermals). The discovery of the greenhouse gas-driven Paleocene-Eocene Thermal Maximum (PETM; ~55 Ma) has spawned a search for analogous events in other parts of the Paleogene record. On the basis of high-resolution bulk sediment and foraminiferal stable isotope analyses performed on three lower Danian sections of the Atlantic Ocean, we report the discovery of a possible greenhouse gas-driven climatic event in the earliest Paleogene. This event - that we term the Dan-C2 event - is characterized by a conspicuous double negative excursion in delta13C and delta18O, associated with a double spike in increased clay content and decreased carbonate content. This suggests a double period of transient greenhouse gas-driven warming and dissolution of carbonates on the seafloor analogous to the PETMin the early Paleocene at ~65.2 Ma. However, the shape of the two negative carbon isotope excursions that make up the Dan-C2 event is different from the PETM carbon isotope profile. In the Dan-C2 event, these excursions are fairly symmetrical and each persisted for about ~40 ky and are separated by a short plateau that brings the combined duration to ~100 ky, suggesting a possible orbital control on the event. Because of the absence of a long recovery phase, we interpret the Dan-C2 event to have been associated with a redistribution of carbon that was already in the biosphere. The Dan-C2 event and other early Paleogene hyperthermals such as the short-lived early Eocene ELMO eventmay reflect amplification of a regular cycle in the size and productivity of the marine biosphere and the balance between burial of organic and carbonate carbon.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Strata that record the evolutionary history of the North American continental margin in a region that serves as the basin margin interface between allochthonous sedimentation from the continent and pelagic sedimentation from the oceanic realm were recovered at Deep Sea Drilling Project Site 603, on the lower continental rise. The lowermost unit recovered at this site is composed of upper Berriasian-Aptian interbedded laminated limestone and bioturbated limestone with sandstone to claystone turbidites. This unit can be correlated with the Blake-Bahama Formation in the western North Atlantic. Studies of the laminated and bioturbated limestones were used to determine the depositional environment. Geochemical and petrographic studies suggest that the laminated limestones were deposited from the suspended particulate loads of the nepheloid layer associated with weak bottom-current activity as well as moderate to poorly oxygenated bottom-water conditions. Fragments of macrofossils are also found in the Blake-Bahama Formation drilled at Site 603. Twelve specimens and their host sediment were analyzed for their carbon and oxygen isotopic composition. The macrofossil samples chosen for analysis consist of nine samples of Inoceramus, two ammonite aptychi, and one belemnite sample. Depletion in 18O is observed in recrystallized specimens. The ammonite aptychi have been diagenetically altered and/or exhibit evidence of isotopic fractionation by the organism. Oxygen isotope paleotemperatures obtained from five well-preserved specimens - four of Inoceramus and one of a belemnite - suggest that bottom-water temperatures in the North Atlantic Basin during the Early Cretaceous were very warm, at least 11°C.