1000 resultados para Carbon, organic, particulate per sediment volume
Resumo:
Concentrations of dissolved and particulate organic carbon (DOC and POC, respectively), phosphorus (DP and PP, respectively) and particulate organic nitrogen (PON) were determined at Station VITYAZ6656 in the Sea of Japan in 12 sea water samples collected in June 1972 with a 200-liter sampling bottle. Mean weighted concentrations from the surface to 2000 m were: DOC - 1.58 mg/l, POC - 17.9 µg/l, DP - 13.9 µg/l, PP - 0.185 µg/l, PON - 2.7 µg/l, the ratios were DOC:DP=100:9 and POC:PON:PP=100:14:1. Relation between POC (µg/l)and the light attenuation index "e" (1/m) for the visible part of the spectrum is described by the equation POC = ca. 170e. The maximum of POC in the upper layer correlated with the maxima of phyto- and bacterioplankton and protozoa.
Resumo:
About one hundred samples of sediments and rocks recovered in Hole 603B were analyzed for type, abundance, and isotopic composition of organic matter, using a combination of Rock-Eval pyrolysis, C-H-N-S elemental analysis, and isotope-ratio mass spectrometry. Concentrations of major, minor, and trace inorganic elements were determined with a combination of X-ray fluorescence and induction-coupled plasma spectrometry. The oldest strata recovered in Hole 603B (lithologic Unit V) consist of interbedded light-colored limestones and marlstones, and black calcareous claystones of Neocomian age. The inorganic and organic geochemical results suggest a very terrigenous aspect to the black claystones. The organic geochemical results indicate that the limestones and marlstones contain a mixture of highly degraded marine and terrestrial organic matter. Comparison of the Neocomian carbonates at Site 603 with those on the other side of the North Atlantic, off Northwest Africa at Site 367, shows that the organic matter at Site 367 contains more marine organic matter, as indicated by higher pyrolysis hydrogen indices and lighter values of d13C. Comparison of inorganic geochemical results for the carbonate lithologies at Site 603 with those for carbonate lithologies at Site 367 suggests that the Site 603 carbonates may contain clastic material from both North American and African sources. The black claystones at Site 603, on the other hand, probably were derived almost entirely from North American clastic sources. Lithologic Unit IV overlying the Neocomian carbonates, consists of interbedded red, green, and black claystones. The black claystones at Site 603 contain more than ten times the organic carbon concentration of the interbedded green claystones. The average concentration of organic carbon in the black claystones (2.8%), however, is low relative to most mid-Cretaceous black claystones and shales in the Atlantic, particularly those found off Northwest Africa. The geochemical data all suggest that the organic matter in the black claystones is more abundant but generally more degraded than the organic matter in the green claystones, and that it was derived mainly from terrestrial sources and deposited in oxygenated bottom waters. The increased percentage of black claystone beds in the upper Cenomanian section, and the presence of more hydrogen-rich organic matter in this part of the section, probably resulted from the increased production and accumulation of marine organic matter that is represented worldwide near the Cenomanian/Turonian boundary in deep-sea and land sections. A few upper Cenomanian black claystone samples that have hydrogen indices > 150 also contain particularly high concentrations of V and Zn. Most samples of black claystone, however, are not particularly metal-rich compared with other black claystones and shales. Compared with red claystones from lithologic Unit IV, the green and black claystones are enriched in many trace transition elements, especially V, Zn, Cu, Co, and Pb. The main difference between the "carbonaceous" claystones of lithologic Unit IV and "variegated" or "multicolored" claystones of the overlying Upper Cretaceous to lower Tertiary Unit III is the absence of black claystone beds. As observed at several other sites (105 and 386), the multicolored claystones at Site 603 are somewhat enriched in several trace transition elements-especially Cu, Ni, and Cr-relative to most deep-sea clays. The multicolored claystones are not enriched in Fe and Mn, and therefore are not "metalliferous" sediments in the sense of those found at several locations in the eastern Pacific. The source of the slightly elevated concentrations of transition metals in the multicolored claystones probably is upward advection and diffusion of metals from the black claystones of the underlying Hatteras Formation. The red, orange, and green claystone beds of lithologic Unit II (Eocene), like those of Unit III, really represent a continuation of deposition of multicolored claystone that began after the deposition of the Neocomian carbonates. The color of the few black beds that occur within this unit results from high concentrations of manganese oxide rather than high concentrations of organic matter.
Resumo:
Dissolved organic matter (DOM) in marine sediments is a complex mixture of thousands of individual constituents that participate in biogeochemical reactions and serve as substrates for benthic microbes. Knowledge of the molecular composition of DOM is a prerequisite for a comprehensive understanding of the biogeochemical processes in sediments. In this study, interstitial water DOM was extracted with Rhizon samplers from a sediment core from the Black Sea and compared to the corresponding water-extractable organic matter fraction (<0.4 µm) obtained by Soxhlet extraction, which mobilizes labile particulate organic matter and DOM. After solid phase extraction (SPE) of DOM, samples were analyzed for the molecular composition by Fourier Transform Ion-Cyclotron Resonance Mass Spectrometry (FT-ICR MS) with electrospray ionization in negative ion mode. The average SPE extraction yield of the dissolved organic carbon (DOC) in interstitial water was 63%, whereas less than 30% of the DOC in Soxhlet-extracted organic matter was recovered. Nevertheless, Soxhlet extraction yielded up to 4.35% of the total sedimentary organic carbon, which is more than 30-times the organic carbon content of the interstitial water. While interstitial water DOM consisted primarily of carbon-, hydrogen- and oxygen-bearing compounds, Soxhlet extracts yielded more complex FT-ICR mass spectra with more peaks and higher abundances of nitrogen- and sulfur-bearing compounds. The molecular composition of both sample types was affected by the geochemical conditions in the sediment; elevated concentrations of HS- promoted the early diagenetic sulfurization of organic matter. The Soxhlet extracts from shallow sediment contained specific three- and four-nitrogen-bearing molecular formulas that were also detected in bacterial cell extracts and presumably represent proteinaceous molecules. These compounds decreased with increasing sediment depth while one- and two-nitrogen-bearing molecules increased, resulting in a higher similarity of both sample types in the deep sediment. In summary, Soxhlet extraction of sediments accessed a larger and more complex pool of organic matter than present in interstitial water DOM.
Resumo:
Contents and distribution of particulate lipids were studied by thin-layer chromatography technique with flame ionization detection (Iatroscan TH-10) along the transect from the Ob River towards the Kara Sea. Lipid contents range from 18.4 to 266 µg/l with, average 84.97 µg/l, which comprises from 4.06 to 58.32 % of total particulate organic matter. Principal constituents of particulate lipids are hydrocarbons (32.14 % of total lipids on the average), polar compounds (29.85 %), wax and sterol esters (13.04 %), and mono- and diglycerides (12.52 %). Secondary components are presented by fatty acid esters (5.14 %), free fatty acids (4.56 %), triglycerides (2.32 %), and sterols (1.04 %). Specific composition of particulate lipids along the Ob River - Kara Sea transect is formed under strong impact of river run-off. Particulate lipid composition reflects differences between processes of organic matter transformation in estuarine and marine parts of the transect, as well as peculiarities of species composition of Arctic living organisms.