102 resultados para atmospheric deep convection


Relevância:

80.00% 80.00%

Publicador:

Resumo:

On the basis of various lithological, mircopaleontological and isotopic proxy records covering the last 30,000 calendar years (cal kyr) the paleoenvironmental evolution of the deep and surface water circulation in the subarctic Nordic seas was reconstructed for a climate interval characterized by intensive ice-sheet growth and subsequent decay on the surrounding land masses. The data reveal considerable temporal changes in the type of thermohaline circulation. Open-water convection prevailed in the early record, providing moisture for the Fennoscandian-Barents ice sheets to grow until they reached the shelf break at ~26 cal. kyr and started to deliver high amounts of ice-rafted debris (IRD) into the ocean via melting icebergs. Low epibenthic delta18O values and small-sized subpolar foraminifera observed after 26 cal. kyr may implicate that advection of Atlantic water into the Nordic seas occurred at the subsurface until 15 cal. kyr. Although modern-like surface and deep-water conditions first developed at ~13.5 cal. kyr, thermohaline circulation remained unstable, switching between a subsurface and surface advection of Atlantic water until 10 cal. kyr when IRD deposition and major input of meltwater ceased. During this time, two depletions in epibenthic delta13C are recognized just before and after the Younger Dryas indicating a notable reduction in convectional processes. Despite an intermittent cooling at ~8 cal. kyr, warmest surface conditions existed in the central Nordic seas between 10 and 6 cal. kyr. However, already after 7 cal. kyr the present day situation gradually evolved, verified by a strong water mass exchange with the Arctic Ocean and an intensifying deep convection as well as surface temperature decrease in the central Nordic seas. This process led to the development of the modern distribution of water masses and associated oceanographic fronts after 5 cal. kyr and, eventually, to today's steep east-west surface temperature gradient. The time discrepancy between intensive vertical convection after 5 cal. kyr but warmest surface temperatures already between 10 and 6 cal. kyr strongly implicates that widespread postglacial surface warming in the Nordic seas was not directly linked to the rates in deep-water formation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present an almost 3 year long time series of shell fluxes and oxygen isotopes of left-coiling Neogloboquadrina pachyderma and Turborotalita quinqueloba from sediment traps moored in the deep central Irminger Sea. We determined their response to the seasonal change from a deeply mixed water column with occasional deep convection in winter to a thermally stratified water column with a surface mixed layer (SML) of around 50 m in summer. Both species display very low fluxes during winter with a remnant summer population holding out until replaced by a vital population that seeds the subsequent blooms. This annual population overturning is marked by a 0.7 per mill increase in d18O in both species. The shell flux of N. pachyderma peaks during the spring bloom and in late summer, when stratification is close to its minimum and maximum, respectively. Both export periods contribute about equally and account for >95% of the total annual flux. Shell fluxes of T. quinqueloba show only a single broad pulse in summer, thus following the seasonal stratification cycle. The d18O of N. pachyderma reflects temperatures just below the base of the seasonal SML without offset from isotopic equilibrium. The d18O pattern of T. quinqueloba shows a nearly identical amplitude and correlates highly with the d18O of N. pachyderma. Therefore T. quinqueloba also reflects temperature near the base of the SML but with a positive offset from isotopic equilibrium. These offsets contrast with observations elsewhere and suggest a variable offset from equilibrium calcification for both species. In the Irminger Sea the species consistently show a contrast in their flux timings. Their flux-weighted delta d18O will thus dominantly be determined by seasonal temperature differences at the base of the SML rather than by differences in their depth habitat. Consequently, their sedimentary delta d18O may be used to infer the seasonal contrast in temperature at the base of the SML.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Laminated sediments spanning the last 20,000 years (though not continuously) in the Shaban Deep, a brine-filled basin in the northern Red Sea, were analyzed microscopically and with backscattered electron imagery in order to determine laminae composition with emphasis on the diatomaceous component. Based on this detailed study, we present schematic models to propose paleoflux scenarios for laminae formation at different time-slices. The investigated core (GeoB 5836-2; 26°12.61'N, 35°21.56'E; water depth 1475 m) shows light and dark alternating laminae that are easily distinguishable in the mid-Holocene and at the end of the deglaciation (13-15 ka) period. Light layers are mainly composed of coccoliths, terrigenous material and diatom fragments, while dark layers consist almost exclusively of diatom frustules (monospecific or mixed assemblages). The regularity in the occurrence of coccolith/diatom couplets points to an annual deposition cycle where contrasting seasons and associated plankton blooms are represented (diatoms-fall/winter deposition, coccoliths-summer signal). We propose that, for the past ~15,000 years, the laminations represent two-season annual varves. Strong dissolution of carbonate, with the concomitant loss of the coccolith-rich layer in sediments older than 15 ka, prevents us from presenting a schematic model of annual deposition. However, the diatomaceous component reveals a marked switch in species composition between Last Glacial Maximum (LGM) sediments (dominated by Chaetoceros resting spores) and sediments somewhat younger (18-19 ka; dominated by Rhizosolenia). We propose that different diatom assemblages reflect changing conditions in stratification in the northern Red Sea: Strong stratification conditions, such as during two meltwater pulses at 14.5 and 11.4 ka, are reflected in the sediment by Rhizosolenia layers, while Chaetoceros-dominated assemblages represent deep convection conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Deep Convection cruise repeatedly sampled two locations in the North Atlantic, sited in the Iceland and Norwegian Basins, onboard the RV Meteor (19 March - 2 May 2012). Samples were collected from multiple casts of a conductivity-temperature-depth (CTD) - Niskin rosette at each station. Water samples for primary production rates, community structure, chlorophyll a [Chl a], calcite [PIC], particulate organic carbon [POC] and biogenic silicic acid [BSi] were collected from predawn casts from six light depths (55%, 20%, 14%, 7%, 5% and 1% of incident PAR). Additional samples for community structure and ancillary parameters were collected from a second cast. Carbon fixation rates were determined using the 13C stable isotope method. Water samples for diatom and micro zooplankton counts, collected from the predawn casts, were preserved with acidic Lugol's solution (2% final solution) and counted using an inverted light microscope. Water samples for coccolithophore counts were collected onto cellulose nitrate filters and counted using polarising light microscopy. Water samples for Chl a analysis were filtered onto MF300 and polycarbonate filters and extracted in 90% acetone. PIC and BSi samples were filtered onto polycarbonate filters and analysed using an inductively coupled plasma emission optical spectrometer and a SEAL QuAAtro autoanalyser respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present new Nd isotope records from Walvis Ridge Ocean Drilling Program (ODP) sites 1262-1264 (southeastern Atlantic) spanning the past 24 Ma to investigate the Neogene evolution of Atlantic thermohaline circulation. The new data indicate that deepwater epsilon-Nd(t) values from ODP Site 1262 decrease from -11.0 at 10.6 Ma to -12.5 by 7.3 Ma. This decrease parallels the Nd isotope trends contained in Fe-Mn crust records from the northwestern Atlantic; however, the shift at ODP Site 1262 (4755 m water depth) occurred up to ~6 Ma earlier than the corresponding changes in crust records from the Atlantic and earlier than any Atlantic site shallower than 2700 m paleowater depth. Recent interpretations of the rapid decrease in Fe-Mn crust Nd epsilon-Nd(t)ss values invoke changes in weathering inputs to the Labrador Sea region rather than a fundamental change in deepwater convection in the Labrador Sea. However, the new evidence for significant depth stratification of the Nd isotope signal in the southeastern Atlantic between 10.6 and 7.3 Ma suggests that the onset of deepwater convection in the Labrador Sea may have played a role in the deepwater decrease in Nd isotopic composition. Climatic conditions during the middle to late Miocene likely favored an increase in the importance of glacially induced mechanical weathering, while at the same time promoting deep convection in the Labrador Sea.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Model for Prediction Across Scales (MPAS) is a novel set of Earth system simulation components and consists of an atmospheric model, an ocean model and a land-ice model. Its distinct features are the use of unstructured Voronoi meshes and C-grid discretisation to address shortcomings of global models on regular grids and the use of limited area models nested in a forcing data set, with respect to parallel scalability, numerical accuracy and physical consistency. This concept allows one to include the feedback of regional land use information on weather and climate at local and global scales in a consistent way, which is impossible to achieve with traditional limited area modelling approaches. Here, we present an in-depth evaluation of MPAS with regards to technical aspects of performing model runs and scalability for three medium-size meshes on four different high-performance computing (HPC) sites with different architectures and compilers. We uncover model limitations and identify new aspects for the model optimisation that are introduced by the use of unstructured Voronoi meshes. We further demonstrate the model performance of MPAS in terms of its capability to reproduce the dynamics of the West African monsoon (WAM) and its associated precipitation in a pilot study. Constrained by available computational resources, we compare 11-month runs for two meshes with observations and a reference simulation from the Weather Research and Forecasting (WRF) model. We show that MPAS can reproduce the atmospheric dynamics on global and local scales in this experiment, but identify a precipitation excess for the West African region. Finally, we conduct extreme scaling tests on a global 3?km mesh with more than 65 million horizontal grid cells on up to half a million cores. We discuss necessary modifications of the model code to improve its parallel performance in general and specific to the HPC environment. We confirm good scaling (70?% parallel efficiency or better) of the MPAS model and provide numbers on the computational requirements for experiments with the 3?km mesh. In doing so, we show that global, convection-resolving atmospheric simulations with MPAS are within reach of current and next generations of high-end computing facilities.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The data collection "Deep Drilling of Glaciers: Soviet-Russian projects in Arctic, 1975-1995" was collected by the following basic considerations: - compilation of deep (>100 m) drilling projects on Arctic glaciers, using data of (a) publications; (b) archives of IGRAN; (c) personal communication of project participants; - documentation of parameters, references. Accuracy of data and techniques applied to determine different parameters are not evaluated. The accuracy of some geochemical parameters (up to 1984 and heavy metalls) is uncertain. Most reconstructions of ice core age and of annual layer thickness are discussed; - digitizing of published diagrams (in case, when original numerical data were lost) and subsequent data conversion to equal range series and adjustment to the common units. Therefore, the equal-range series were calculated from original data or converted from digitized chart values as indicated in the metadata. For the methodological purpose, the equal-range series obtained from original and reconstructed data were compared repeatedly; the systematic difference was less then 5-7%. Special attention should be given to the fact, that the data for individual ice core parameters varies, because some parameters were originally measured or registered. Parameters were converted in equal-range series using 2 m steps; - two or more parameter values were determined, then the mean-weighted (i.e. accounting the sample length) value is assigned to the entire interval; - one parameter value was determined, measured or registered independently from the parameter values in depth intervals which over- and underlie it, then the value is assigned to the entire interval; - one parameter value was determined, measured or registered for two adjoining depth intervals, then the specific value is assigned to the depth interval, which represents >75% of sample length ; if each of adjoining depth intervals represents <75% of sample length, then the correspondent parameter value is assigned to both intervals of depth. This collection of ice core data (version 2000) was made available through the EU funded QUEEN project by S.M. Arkhipov, Moscow.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rapid climate changes at the onset of the last deglaciation and during Heinrich Event H4 were studied in detail at IMAGES cores MD95-2039 and MD95-2040 from the Western Iberian margin. A major reorganisation of surface water hydrography, benthic foraminiferal community structure, and deepwater isotopic composition commenced already 540 years before the Last Isotopic Maximum (LIM) at 17.43 cal. ka and within 670 years affected all environments. Changes were initiated by meltwater spill in the Nordic Seas and northern North Atlantic that commenced 100 years before concomitant changes were felt off western Iberia. Benthic foraminiferal associations record the drawdown of deepwater oxygenation during meltwater and subsequent Heinrich Events H1 and H4 with a bloom of dysoxic species. At a water depth of 3380 m, benthic oxygen isotopes depict the influence of brines from sea ice formation during ice-rafting pulses and meltwater spill. The brines conceivably were a source of ventilation and provided oxygen to the deeper water masses. Some if not most of the lower deep water came from the South Atlantic. Benthic foraminiferal assemblages display a multi-centennial, approximately 300-year periodicity of oxygen supply at 2470-m water depth. This pattern suggests a probable influence of atmospheric oscillations on the thermohaline convection with frequencies similar to Holocene climate variations. For Heinrich Events H1 and H4, response times of surface water properties off western Iberia to meltwater injection to the Nordic Seas were extremely short, in the range of a few decades only. The ensuing reduction of deepwater ventilation commenced within 500-600 years after the first onset of meltwater spill. These fast temporal responses lend credence to numerical simulations that indicate ocean-climate responses on similar and even faster time scales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dating of sediment cores from the Baltic Sea has proven to be difficult due to uncertainties surrounding the 14C reservoir age and a scarcity of macrofossils suitable for dating. Here we present the results of multiple dating methods carried out on cores in the Gotland Deep area of the Baltic Sea. Particular emphasis is placed on the Littorina stage (8 ka ago to the present) of the Baltic Sea and possible changes in the 14C reservoir age of our dated samples. Three geochronological methods are used. Firstly, palaeomagnetic secular variations (PSV) are reconstructed, whereby ages are transferred to PSV features through comparison with varved lake sediment based PSV records. Secondly, lead (Pb) content and stable isotope analysis are used to identify past peaks in anthropogenic atmospheric Pb pollution. Lastly, 14C determinations were carried out on benthic foraminifera (Elphidium spec.) samples from the brackish Littorina stage of the Baltic Sea. Determinations carried out on smaller samples (as low as 4 µg C) employed an experimental, state-of-the-art method involving the direct measurement of CO2 from samples by a gas ion source without the need for a graphitisation step - the first time this method has been performed on foraminifera in an applied study. The PSV chronology, based on the uppermost Littorina stage sediments, produced ten age constraints between 6.29 and 1.29 cal ka BP, and the Pb depositional analysis produced two age constraints associated with the Medieval pollution peak. Analysis of PSV data shows that adequate directional data can be derived from both the present Littorina saline phase muds and Baltic Ice Lake stage varved glacial sediments. Ferrimagnetic iron sulphides, most likely authigenic greigite (Fe3S4), present in the intermediate Ancylus Lake freshwater stage sediments acquire a gyroremanent magnetisation during static alternating field (AF) demagnetisation, preventing the identification of a primary natural remanent magnetisation for these sediments. An inferred marine reservoir age offset (deltaR) is calculated by comparing the foraminifera 14C determinations to a PSV & Pb age model. This deltaR is found to trend towards younger values upwards in the core, possibly due to a gradual change in hydrographic conditions brought about by a reduction in marine water exchange from the open sea due to continued isostatic rebound.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have measured the 3He/3He and 3He/20 Ne ratios of thirty-nine pore water and gas samples in deep-sea sediments collected at twelve sites on the Pacific Ocean bottom during the cruises of Deep Sea Drilling Project Legs 87, 89, 90 and 92. The 3He/4He and 4He/20Ne ratios vary from 0.000000215 to 0.00000165 and from 0.29 to 20, respectively. He in the sample is composed of four components: (1) atmospheric He dissolved in seawater; (2) atmospheric He with mantle-derived He in Pacific bottom water; (3) in situ radiogenic He in the sediment; and (4) crustal He in the basement rock. Assuming that the 20Ne contents are constant with the value of seawater, the depth variations in the 4He/20Ne ratios at five Sites, 583D, 594, 597A, 598A and 504B, may provide useful information on 4He flux at the ocean bottom. The estimated 4He fluxes vary from 2000 to 40000 atoms cm**-2 s**-1 and are one to three orders of magnitude less than those calculated from the excess He in deep ocean water. An overall similarity between the geographical distribution of the 3He/4He ratios and heat flow data is found in the study area, between the East Pacific Rise across the Pacific Ocean and the Japanese Islands. The tendency is well explained by a conventional sea-floor spreading model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We studied two deep-sea cores from the Scotia Sea to reconstruct past atmospheric circulation in the southern hemisphere and to resolve a long-standing debate on the interpretation of magnetic susceptibility (MS) records in Southern Ocean (SO) sediment. High-sedimentation sites MD07-3134 (0.2 - 1.2 m/kyr) and MD07-3133 (0.3 - 2 m/kyr) cover the last 92.5 kyr and 36 kyr, respectively. Both exhibit a one-to-one coupling of the MS and Ca2+ signal to the non-sea salt (nss) Ca2+ signal of the EDML ice core, clearly identifying atmospheric circulation as means of distribution. Comparison of additional proxies also excludes major influence by volcanic sources, sea-ice, icebergs, or oceanic current transport. The close resemblance of the dust proxies over the last glacial cycle, in turn, allows for the establishment of an age model of unprecedented resolution and precision for SO deep-sea sediment because atmospheric transport involves no major leads or lags. This is of particular importance because MS is routinely measured on deep-sea cores in the SO but the sediments usually lack biogenic carbonate and therefore had only limited stratigraphic control so far. Southern South America (SSA) is the likely source of eolian material because Site MD07-3133, located closer to the continent, has slightly higher MS values than Site MD07-3134, and also the MS record of Patagonian Site SALSA shows comparable variability. Patagonia was the dust source for both the Scotia Sea and East Antarctica. Dust fluxes were several times higher during glacial times, when atmospheric circulation was either stronger or shifted in latitude, sea level was lowered, shelf surfaces were exposed, and environmental conditions in SSA were dominated by glaciers and extended outwash plains. Hence, MS records of SO deep-sea sediment are reliable tracers of atmospheric circulation, allowing for chronologically-constrained reconstructions of the circum Antarctic paleoclimate history.