88 resultados para Winter
Resumo:
The physiological condition of larval Antarctic krill was investigated during austral autumn 2004 and winter 2006 in the Lazarev Sea, to provide better understanding of a critical period of their life cycle. The condition of larvae was quantified in both seasons by determining their body length (BL), dry mass (DM), elemental- and biochemical composition, as well as stomach content analysis, and rates of metabolism and growth. Overall the larvae in autumn were in better condition under the ice than in open water, and for those under the ice there was a decrease in condition from autumn to winter. Thus growth rates of furcilia larvae in open water in autumn were similar to winter values under the ice (mean 0.008 mm/d), whereas autumn, under ice values were higher: 0.015 mm/d. Equivalent larval stages had up to 30% lower BL and 70% lower DM in winter compared to autumn, with mean oxygen consumption 44% lower (0.54 µl O2 DM/h). However, their ammonium excretion rates doubled (from 0.03-0.06 µg NH4 DM/h) so their mean O:N ratio was 46 in autumn and 15 in winter. Thus differing metabolic substrates were used between autumn and winter, suggesting a flexible overwintering strategy, as suggested for adults. The larvae were eating small copepods (Oithona spp.) and/or protozoans as well as autotrophic food under the ice. However, pelagic Chlorophyll a (Chl a) was a good predictor for growth in both seasons. The physics (current speed/ice topography) probably has a critical part to play in whether larval krill can exploit the food that may be associated with sea ice or be advected away from such suitable feeding habitat.
Resumo:
Here, the pelagic carbonate system and the ?13C signature of dissolved inorganic carbonate (DIC) were investigated in a tidal basin of the southern North Sea, the Jade Bay, with respect to tidal cycles and a transect towards the North Sea in winter time (January and November, 2010). Physical parameters, major and trace elements, and nutrient concentrations were considered, too. Primary production and pelagic organic matter respiration were negligible during winter time. Both, the compositional variations on the transects as well as during the tidal cycles indicate the mixing of North Sea with fresh water. The combined spatial co-variations of different parameters indicate an introduction of fresh water that was enriched in DI12C, metabolites (e.g., ammonia), protons, and dissolved redox-sensitive elements (e.g., Mn2+). During the January campaign, the discharge via the flood gates was limited due to ice cover of the hinterland drainage ditches, allowing for an observation of tidal variations without significant mixing contributions from surface water discharges. Considering a binary mixing model with North Sea and fresh water as end-members, the extrapolated fresh water end-member composition for this campaign is estimated to contain about 3.8 mmol/kg DIC , and enhanced concentrations of NH4+, Mn2+, and protons compared to North Sea water. The fast temporal response of dissolved geochemical tracers on tidal variations in the Jade Bay indicates a continuous supply of a fresh water component. The measured composition of fresh waters entering the Jade Bay via flood gates (end of October, 2010) did not match the values estimated by the binary mixing model. Therefore, the overall fresh water component likely is a mixture between sources originating from flood gates and (in January) dominating submarine groundwater discharge entering the Jade Bay. This model is consistent with the results obtained during the November campaign, when a more important contribution from flood gates is expected and a more variable fresh water end-member is estimated. The co-variations of the concentrations and the stable carbon isotope composition of DIC are applied to evaluate possible superimposed sink-source-transformation processes in the coastal waters and a general co-variation scheme is suggested.
Resumo:
This study of Antarctic sympagic meiofauna in pack ice during late winter compares communities between the perennially ice-covered western Weddell Sea and the seasonally ice-covered southern Indian Ocean. Sympagic meiofauna (proto- and metazoans > 20 µm) and eggs > 20 µm were studied in terms of diversity, abundance and carbon biomass, and with respect to vertical distribution. Metazoan meiofauna had significantly higher abundance and biomass in the western Weddell Sea (medians: 31.1 * 10**3/m**2 and 6.53 mg/m**2, respectively) than in the southern Indian Ocean (medians: 1.0 * 10**3 /m**2 and 0.06 mg/m**2, respectively). Metazoan diversity was also significantly higher in the western Weddell Sea. Furthermore, the two regions differed significantly in terms of meiofauna community composition, as revealed through multivariate analyses. The overall diversity of sympagic meiofauna was high, and integrated abundance and biomass of total meiofauna were also high in both regions (0.6 - 178.6 * 10**3/m**2 and 0.02 - 89.70 mg/m**2, respectively), mostly exceeding values reported earlier from the western Weddell Sea in winter. We attribute the differences in meiofauna communities between the two regions to the older first-year ice and multi-year ice that is present in the western Weddell Sea, but not in the southern Indian Ocean. Our study indicates the significance of perennially ice-covered regions for the establishment of diverse and abundant meiofauna communities. Furthermore, it highlights the potential importance of sympagic meiofauna for the organic matter pool and trophic interactions in sea ice.
Resumo:
The Indian monsoon system is an important climate feature of the northern Indian Ocean. Small variations of the wind and precipitation patterns have fundamental influence on the societal, agricultural, and economic development of India and its neighboring countries. To understand current trends, sensitivity to forcing, or natural variation, records beyond the instrumental period are needed. However, high-resolution archives of past winter monsoon variability are scarce. One potential archive of such records are marine sediments deposited on the continental slope in the NE Arabian Sea, an area where present-day conditions are dominated by the winter monsoon. In this region, winter monsoon conditions lead to distinctive changes in surface water properties, affecting marine plankton communities that are deposited in the sediment. Using planktic foraminifera as a sensitive and well-preserved plankton group, we first characterize the response of their species distribution on environmental gradients from a dataset of surface sediment samples in the tropical and sub-tropical Indian Ocean. Transfer functions for quantitative paleoenvironmental reconstructions were applied to a decadal-scale record of assemblage counts from the Pakistan Margin spanning the last 2000?years. The reconstructed temperature record reveals an intensification of winter monsoon intensity near the year 100 CE. Prior to this transition, winter temperatures were >1.5°C warmer than today. Conditions similar to the present seem to have established after 450 CE, interrupted by a singular event near 950 CE with warmer temperatures and accordingly weak winter monsoon. Frequency analysis revealed significant 75-, 40-, and 37-year cycles, which are known from decadal- to centennial-scale resolution records of Indian summer monsoon variability and interpreted as solar irradiance forcing. Our first independent record of Indian winter monsoon activity confirms that winter and summer monsoons were modulated on the same frequency bands and thus indicates that both monsoon systems are likely controlled by the same driving force.
Resumo:
The Indian winter monsoon (IWM) is a key component of the seasonally changing monsoon system that affects the densely populated regions of South Asia. Cold winds originating in high northern latitudes provide a link of continental-scale Northern Hemisphere climate to the tropics. Western Disturbances (WD) associated with the IWM play a critical role for the climate and hydrology in northern India and the western Himalaya region. It is vital to understand the mechanisms and teleconnections that influence IWM variability to better predict changes in future climate. Here we present a study of regionally calibrated winter (January) temperatures and according IWM intensities, based on a planktic foraminiferal record with biennial (2.55 years) resolution. Over the last ~250 years, IWM intensities gradually weakened, based on the long-term trend of reconstructed January temperatures. Furthermore, the results indicate that IWM is connected on interannual- to decadal time scales to climate variability of the tropical and extratropical Pacific, via El Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO). However, our findings suggest that this relationship appeared to begin to decouple since the beginning of the 20th century. Cross-spectral analysis revealed that several distinct decadal-scale phases of colder climate and accordingly more intense winter monsoon centered at the years ~1800, ~1890 and ~1930 can be linked to changes of the North Atlantic Oscillation (NAO).