250 resultados para The central core
Resumo:
Based on data from R/V Polarstern multibeam sonar surveys between 1984 and 1997 a high resolution bathymetry has been generated for the central Fram Strait. The area ensonified covers approx. 36,500 sqkm between 78°N-80°N and 0°E-7.5°E. Basic outcome of the investigation is a Digital Terrain Model (DTM) with 100 m grid spacing which was utilized for contouring and generation of a new series of bathymetric charts (AWI BCFS).
Resumo:
In 1979 a core drilling project was carried out on Vernagtferner in the Oetztal Alps (Austria). This report describes the field work of the drilling project, the recovered core material and the occurrence of water in the boreholes and compiles the succeding investigation program.
Resumo:
Collections made with 150 l sampling bottles and BR 113/140 nets, as well as direct counts from the Mir submersible are used to analyze vertical distribution of total biomass of meso- and macroplankton and biomass distributions of their main component groups in the central oligotrophic regions of the North Pacific. Biomass of mesoplankton in the upper 200 m layer ranges from 3.1 to 8.6 g/m**2, but sometimes it increases up to as much as 98 g/m**2 in local population explosions of salps. Jellies predominate in macroplankton at depths of up to 2-3 km, contributing 97-98% of live weight and 30-70% of biomass as organic carbon. In importance they are followed by micronecton fishes (up to 40% of organic carbon). Contributions of other groups countable from the submersible were negligible. Distributions of species at particular stations are discussed.
Resumo:
Although it is well known that the Paleocene/Eocene thermal maximum (PETM) coincided with a major benthic foraminiferal extinction event, the detailed pattern of the faunal turnover has not yet been clarified. Our high-resolution benthic foraminiferal and carbon isotope analyses at the low latitude Pacific Ocean Shatsky Rise have revealed the following record of major faunal transitions: (1) An initial turnover which involved the benthic foraminiferal extinction event (BFE). The BFE, marked by a sharp transition from Pre-extinction fauna to Disaster fauna represented by small-sized Bolivina gracilis, expresses the onset of the PETM and the abrupt extinction of about 30% of taxa. This faunal transition lasted about 45-74 kyr after the initiation of the PETM and was followed by: (2) the appearance of Opportunistic fauna represented by Quadrimorphina profunda, which existed for about 74-91 kyr after the initiation of the PETM. These two faunas, which appeared after the extinction event, are characterized by low diversity and dwarfism, possibly due to lowered oxygen condition and decreased surface productivity. The second pronounced turnover involved the gradual recovery from Opportunistic Fauna to the establishment of Recovery fauna, which coincided with the recovery about 83-91 kyr after its initiation.
Resumo:
Neogene biostratigraphic and magnetostratigraphic data are compiled from Holes 747A, 748B, and 751A drilled on the Southern Kerguelen Plateau during Ocean Drilling Program Leg 120. Neogene sections have excellent to good magnetostratigraphic signatures in many intervals. This, in addition to minimal coring gaps and the occurrence of mixed assemblages of both calcareous and siliceous microfossil assemblages, makes these valuable biostratigraphic reference sections for intra- and extraregional correlations. This paper combines the sequence of biostratigraphic events reported from diatom, radiolarian, planktonic foraminifer, calcareous nannofossil, and silicoflagellate studies of Leg 120 sediments. It correlates microfossil datums with the geomagnetic polarity time scale to test existing age estimates and to refine biostratigraphic age controls for the southern high latitudes. Significant biostratigraphic datums are presented in a series of age-depth plots. Numerous hiatuses are clearly identified through this approach, and the positions of lesser disconformities are suggested. Most Neogene intervals are represented in at least one site, although "regional" unconformities occur in the upper Pliocene, uppermost Miocene/lowermost Pliocene, middle upper Miocene, middle middle Miocene, and at the lower/middle Miocene boundaries. The longest hiatus spanned 6 m.y., with most other hiatuses representing 1 m.y. or less. This paper compiles Leg 120 biostratigraphic and magnetostratigraphic data for use in future syntheses of southern high latitude biostratigraphy and presents an age model for Leg 120 Neogene sediments.
Resumo:
The monograph considers facial conditions of ore-formation in the Central Equatorial Pacific, as well as lithostratigraphy and local variability of bottom sediments. Mineral composition of nodules, forms of occurrence of chemical elements in sediments and nodules, composition of interstitial waters, age of nodules, regularities and processes of ore formation in the radiolarian belt of the Pacific Ocean zone are also under consideration.
Resumo:
Original geological, geophysical, lithological, mineralogical data on uplifts of the Central Atlantic are given in the book based on materials of Cruise 1 of the R/V Akademik Nikolaj Strakhov. Geological and geophysical studies include description of the obtained material and analysis of structural and morphological elements of the ocean floor. Results of lithological, petrochemical and geochemical studies were extremely innovative and develop a conceptual model. The latter include studies of petrochemical evolution of tholeiitic alkaline plate volcanism, large-scale hydrothermal transformation of basement rocks - palygorskitization, phosphatization and ferromanganese mineralization. Showing imposition Superposition of hydrogenic alteration on hydrothermally altered rocks and its role in Cenozoic history of sedimentation is shown.
Resumo:
Production, oxygen uptake, and sinking velocity of copepod fecal pellets egested by Temora longicornis were measured using a nanoflagellate (Rhodomonas sp.), a diatom (Thalassiosira weissflogii), or a coccolithophorid (Emiliania huxleyi) as food sources. Fecal pellet production varied between 0.8 pellets ind**-1 h**-1 and 3.8 pellets ind**-1 h**-1 and was significantly higher with T. weissflogii than with the other food sources. Average pellet size varied between 2.2 x 10**5 µm**3 and 10.0 x 10**5 µm**3. Using an oxygen microsensor, small-scale oxygen fluxes and microbial respiration rates were measured directly with a spatial resolution of 2 µm at the interface of copepod fecal pellets and the surrounding water. Averaged volume-specific respiration rates were 4.12 fmol O2 µm**-3 d**-1, 2.86 fmol O2 µm**-3 d**-1, and 0.73 fmol O2 µm**-3 d**-1 in pellets produced on Rhodomonas sp., T. weissflogii, and E. huxleyi, respectively. The average carbon-specific respiration rate was 0.15 d**-1 independent on diet (range: 0.08-0.21 d**-1). Because of ballasting of opal and calcite, sinking velocities were significantly higher for pellets produced on T. weissflogii (322 +- 169 m d**-1) and E. huxleyi (200 +- 93 m d**-1) than on Rhodomonas sp. (35 +- 29 m d**-1). Preservation of carbon was estimated to be approximately 10-fold higher in fecal pellets produced when T. longicornis was fed E. huxleyi or T. weissflogii rather than Rhodomonas sp. Our study directly demonstrates that ballast increases the sinking rate of freshly produced copepod fecal pellets but does not protect them from decomposition.
Resumo:
A study of petrographic and mineral compositions of 26 sediment cores from the western part of the Central Basin of the Indian Ocean has identified biogenic, terrigenous, volcanogenic, and authigenic sediment types formed in certain facies conditions. On the basis of bio- and paleomagnetic stratigraphy data from the cores sedimentation rates of different sediment types have been calculated. Modern and Pliocene-Pleistocene positions of the main facies boundaries (the critical depth of carbonate accumulation, the geochemical boundary between hemi- and miopelagic zones, the frontal boundaries of the equatorial belt of biogenic silica accumulation) have been determined. It has been shown that the sedimentary process during Pliocene-Quaternary had cycle variations characterized by successive changes of different sedimentation types - hemipelagic, miopelagic, and biogenic.
Resumo:
Strontium isotopic compositions of ichthyoliths (microscopic fish remains) in deep-sea clays recovered from the North Pacific Ocean (ODP holes 885A, 886B, and 886C) are used to provide stratigraphic age control within these otherwise undatable sediments. Age control within the deep-sea clays is crucial for determining changes in sedimentation rates, and for calculating fluxes of chemical and mineral components to the sediments. The Sr isotopic ages are in excellent agreement with independent age datums from above (diatom ooze), below (basalt basement) and within (Cretaceous-Tertiary boundary) the clay deposit. The 87Sr/86Sr ratios of fish teeth from the top of the pelagic clay unit (0.7089891), indicate an Late Miocene age (5.8 Ma), as do radiolarian and diatom biostratigraphic ages in the overlying diatom ooze. The 87Sr/86Sr ratio (0.707887) is consistent with a Cretaceous-Tertiary boundary age, as identified by anomalously high iridium, shocked quartz, and sperules in Hole 886C. The 87Sr/86Sr ratios of pretreated fish teeth from the base of the clay unit are similar to Late Cretaceous seawater (0.707779-0.7075191), consistent with radiometric ages from the underlying basalt of 81 Ma. Calculation of sedimentation rates based on Sr isotopic ages from Hole 886C indicate an average sedimentation rate of 17.7 m/Myr in Unit II (diatom ooze), 0.55 m/Myr in Unit IIIa (pelagic clay), and 0.68 m/Myr in Unit IIIb (distal hydrothermal precipitates). The Sr isotopic ages indicate a period of greatly reduced sedimentation (or possible hiatus) between about 35 and 65 Ma (Eocene-Paleocene), with a linear sedimentation rate of only 0.04 m/Myr The calculated sedimentation rates are generally inversely proportional to cobalt accumulation rates and ichthyolith abundances. However, discrepancies between Sr isotope ages and cobalt accumulation ages of l0-15 Myr are evident, particularly in the middle of the clay unit IIIa (Oligocene-Paleocene).