89 resultados para SURFACE-AREA CARBON
Resumo:
The coccolithophore Emiliania huxleyi is a marine phytoplankton species capable of forming small calcium carbonate scales (coccoliths) which cover the organic part of the cell. Calcification rates of E. huxleyi are known to be sensitive to changes in seawater carbonate chemistry. It has, however, not yet been clearly determined how these changes are reflected in size and weight of individual coccoliths and which specific parameter(s) of the carbonate system drive morphological modifications. Here, we compare data on coccolith size, weight, and malformation from a set of five experiments with a large diversity of carbonate chemistry conditions. This diversity allows distinguishing the influence of individual carbonate chemistry parameters such as carbon dioxide (CO2), bicarbonate (HCO3- ), carbonate ion (CO32-), and protons (H+) on the measured parameters. Measurements of fine-scale morphological structures reveal an increase of coccolith malformation with decreasing pH suggesting that H+ is the major factor causing malformations. Coccolith distal shield area varies from about 5 to 11 µm2. Changes in size seem to be mainly induced by varying [HCO3- ] and [H+] although influence of [CO32-] cannot be entirely ruled out. Changes in coccolith weight were proportional to changes in size. Increasing CaCO3 production rates are reflected in an increase in coccolith weight and an increase of the number of coccoliths formed per unit time. The combined investigation of morphological features and coccolith production rates presented in this study may help to interpret data derived from sediment cores, where coccolith morphology is used to reconstruct calcification rates in the water column.
Resumo:
Corvio sandstone is a ~20 m thick unit (Corvio Formation) that appears in the top section of the Frontada Formation (Campoó Group; Lower Cretaceous) located in Northern Spain in the southern margin of the Basque-Cantabrian Basin. Up to 228 plugs were cored from four 0.3 x 0.2 x 0.5 m blocks of Corvio sandstone, to perform a comprehensive characterization of the physical, mineralogical, geomechanical, geophysical and hydrodynamic properties of this geological formation, and the anisotropic assessment of the most relevant parameters. Here we present the first data set obtained on 53 plugs which covers (i) basic physical and chemical properties including density, porosity, specific surface area and elementary analysis (XRF - CHNS); (ii) the curves obtained during unconfined and confined strengths tests, the tensile strengths, the calculated static elastic moduli and the characteristic stress levels describing the brittle behaviour of the rock; (iii) P- and S-wave velocities (and dynamic elastic moduli) and their respective attenuation factors Qp and Qs, electrical resistivity for a wide range of confining stress; and (iv) permeability and transport tracer tests. Furthermore, the geophysical, permeability and transport tests were additionally performed along the three main orthogonal directions of the original blocks, in order to complete a preliminary anisotropic assessment of the Corvio sandstone.
Resumo:
A well-documented, publicly available, global data set of surface ocean carbon dioxide (CO2) parameters has been called for by international groups for nearly two decades. The Surface Ocean CO2 Atlas (SOCAT) project was initiated by the international marine carbon science community in 2007 with the aim of providing a comprehensive, publicly available, regularly updated, global data set of marine surface CO2, which had been subject to quality control (QC). Many additional CO2 data, not yet made public via the Carbon Dioxide Information Analysis Center (CDIAC), were retrieved from data originators, public websites and other data centres. All data were put in a uniform format following a strict protocol. Quality control was carried out according to clearly defined criteria. Regional specialists performed the quality control, using state-of-the-art web-based tools, specially developed for accomplishing this global team effort. SOCAT version 1.5 was made public in September 2011 and holds 6.3 million quality controlled surface CO2 data points from the global oceans and coastal seas, spanning four decades (1968-2007). Three types of data products are available: individual cruise files, a merged complete data set and gridded products. With the rapid expansion of marine CO2 data collection and the importance of quantifying net global oceanic CO2 uptake and its changes, sustained data synthesis and data access are priorities.
Resumo:
Ignoring small-scale heterogeneities in Arctic land cover may bias estimates of water, heat and carbon fluxes in large-scale climate and ecosystem models. We investigated subpixel-scale heterogeneity in CHRIS/PROBA and Landsat-7 ETM+ satellite imagery over ice-wedge polygonal tundra in the Lena Delta of Siberia, and the associated implications for evapotranspiration (ET) estimation. Field measurements were combined with aerial and satellite data to link fine-scale (0.3 m resolution) with coarse-scale (upto 30 m resolution) land cover data. A large portion of the total wet tundra (80%) and water body area (30%) appeared in the form of patches less than 0.1 ha in size, which could not be resolved with satellite data. Wet tundra and small water bodies represented about half of the total ET in summer. Their contribution was reduced to 20% in fall, during which ET rates from dry tundra were highest instead. Inclusion of subpixel-scale water bodies increased the total water surface area of the Lena Delta from 13% to 20%. The actual land/water proportions within each composite satellite pixel was best captured with Landsat data using a statistical downscaling approach, which is recommended for reliable large-scale modelling of water, heat and carbon exchange from permafrost landscapes.
Resumo:
The Gulf of Carpentaria is an epicontinental sea (maximum depth 70 m) between Australia and New Guinea, bordered to the east by Torres Strait (currently 12 m deep) and to the west by the Arafura Sill (53 m below present sea level). Throughout the Quaternary, during times of low sea-level, the Gulf was separated from the open waters of the Indian and Pacific Oceans, forming Lake Carpentaria, an isolation basin, perched above contemporaneous sea-level with outlet channels to the Arafura Sea. A preliminary interpretation is presented of the palaeoenvironments recorded in six sediment cores collected by the IMAGES program in the Gulf of Carpentaria. The longest core (approx. 15 m) spans the past 130 ka and includes a record of sea-level/lake-level changes, with particular complexity between 80 and 40 ka when sea-level repeatedly breached and withdrew from Gulf/Lake Carpentaria. Evidence from biotic remains (foraminifers, ostracods, pollen), sedimentology and geochemistry clearly identifies a final marine transgression at about 9.7 ka (radiocarbon years). Before this transgression, Lake Carpentaria was surrounded by grassland, was near full, and may have had a surface area approaching 600 km-300 km and a depth of about 15 m. The earlier rise in sea-level which accompanied the Marine Isotopic Stage 6/5 transgression at about 130 ka is constrained by sedimentological and biotic evidence and dated by optical- and thermoluminescence and amino acid racemisation methods.
Resumo:
Insight into the response of reef corals and other major marine calcifiers to ocean acidification is limited by a lack of knowledge about how seawater pH and carbonate chemistry impact the physiological processes that drive biomineralization. Ocean acidification is proposed to reduce calcification rates in corals by causing declines in internal pH at the calcifying tissue-skeleton interface where biomineralization takes place. Here, we performed an in vivo study on how partial-pressure CO(2)-driven seawater acidification impacts intracellular pH in coral calcifying cells and extracellular pH in the fluid at the tissue-skeleton interface [subcalicoblastic medium (SCM)] in the coral Stylophora pistillata. We also measured calcification in corals grown under the same conditions of seawater acidification by measuring lateral growth of colonies and growth of aragonite crystals under the calcifying tissue. Our findings confirm that seawater acidification decreases pH of the SCM, but this decrease is gradual relative to the surrounding seawater, leading to an increasing pH gradient between the SCM and seawater. Reductions in calcification rate, both at the level of crystals and whole colonies, were only observed in our lowest pH treatment when pH was significantly depressed in the calcifying cells in addition to the SCM. Overall, our findings suggest that reef corals may mitigate the effects of seawater acidification by regulating pH in the SCM, but they also highlight the role of calcifying cell pH homeostasis in determining the response of reef corals to changes in external seawater pH and carbonate chemistry.
Resumo:
The effect of decreasing aragonite saturation state (Omega Arag) of seawater (elevated pCO2) on calcification rates of Acropora muricata was studied using nubbins prepared from parent colonies located at two sites of La Saline reef (La Réunion Island, western Indian Ocean): a back-reef site (BR) affected by nutrient-enriched groundwater discharge (mainly nitrate), and a reef flat site (RF) with low terrigenous inputs. Protein and chlorophyll a content of the nubbins, as well as zooxanthellae abundance, were lower at RF than BR. Nubbins were incubated at ~27°C over 2 h under sunlight, in filtered seawater manipulated to get differing initial pCO2 (1,440-340 µatm), Omega Arag (1.4-4.0), and dissolved inorganic carbon (DIC) concentrations (2,100-1,850 µmol kg-1). Increasing DIC concentrations at constant total alkalinity (AT) resulted in a decrease in Omega Arag and an increase in pCO2. AT at the beginning of the incubations was kept at a natural level of 2,193 +- 6 µmol kg-1 (mean +- SD). Net photosynthesis (NP) and calcification were calculated from changes in pH and AT during the incubations. Calcification decrease in response to doubling pCO2 relative to preindustrial level was 22% for RF nubbins. When normalized to surface area of the nubbins, (1) NP and calcification were higher at BR than RF, (2) NP increased in high pCO2 treatments at BR compared to low pCO2 treatments, and (3) calcification was not related to Omega Arag at BR. When normalized to NP, calcification was linearly related to Omega Arag at both sites, and the slopes of the relationships were not significantly different. The increase in NP at BR in the high pCO2 treatments may have increased calcification and thus masked the negative effect of low Omega Arag on calcification. Removing the effect of NP variations at BR showed that calcification declined in a similar manner with decreased Omega Arag (increased pCO2) whatever the nutrient loading.
Resumo:
The presented thesis was written in the frame of a project called 'seepage water prognosis'. It was funded by the Federal Ministry for Education and Science (BMBF). 41 German institutions among them research institutes of universities, public authorities and engineering companies were financed for three years respectively. The aim was to work out the scientific basis that is needed to carry out a seepage water prognosis (Oberacker und Eberle, 2002). According to the Federal German Soil Protection Act (Federal Bulletin, 1998) a seepage water prognosis is required in order to avoid future soil impacts from the application of recycling products. The participants focused on the development of either methods to determine the source strength of the materials investigated, which is defined as the total mass flow caused by natural leaching or on models to predict the contaminants transport through the underlying soil. Annual meetings of all participants as well as separate meetings of the two subprojects were held. The department of Geosciences in Bremen participated with two subprojects. The aim of the subproject that resulted in this thesis was the development of easily applicable, valid, and generally accepted laboratory methods for the determination of the source strength. In the scope of the second subproject my colleague Veith Becker developed a computer model for the transport prognosis with the source strength as the main input parameter.
Resumo:
Excess Thorium-230 (230Thxs) as a constant flux tracer is an essential tool for paleoceanographic studies, but its limitations for flux normalization are still a matter of debate. In regions of rapid sediment accumulation, it has been an open question if 230Thxs-normalized fluxes are biased by particle sorting effects during sediment redistribution. In order to study the sorting effect of sediment transport on 230Thxs, we analyzed the specific activity of 230Thxs in different particle size classes of carbonate-rich sediments from the South East Atlantic, and of opal-rich sediments from the Atlantic sector of the Southern Ocean. At both sites, we compare the 230Thxs distribution in neighboring high vs. low accumulation settings. Two grain-size fractionation methods are explored. We find that the 230Thxs distribution is strongly grain size dependent, and 50-90% of the total 230Thxs inventory is concentrated in fine material smaller than 10 µm, which is preferentially deposited at the high accumulation sites. This leads to an overestimation of the focusing factor Psi, and consequently to an underestimation of the vertical flux rate at such sites. The distribution of authigenic uranium indicates that fine organic-rich material has also been re-deposited from lateral sources. If the particle sorting effect is considered in the flux calculations, it reduces the estimated extent of sediment focusing. In order to assess the maximum effect of particle sorting on Psi, we present an extreme scenario, in which we assume a lateral sediment supply of only fine material (< 10 µm). In this case, the focusing factor of the opal-rich core would be reduced from Psi = 5.9 to Psi = 3.2. In a more likely scenario, allowing silt-sized material to be transported, Psi is reduced from 5.9 to 5.0 if particle sorting is taken into consideration. The bias introduced by particle sorting is most important for strongly focused sediments. Comparing 230Thxs-normalized mass fluxes biased by sorting effects with uncorrected mass fluxes, we suggest that 230Thxs-normalization is still a valid tool to correct for lateral sediment redistribution. However, differences in focusing factors between core locations have to be evaluated carefully, taking the grain size distributions into consideration.
Resumo:
Uptake of anthropogenic CO2 by the oceans is altering seawater chemistry with potentially serious consequences for coral reef ecosystems due to the reduction of seawater pH and aragonite saturation state (omega arag). The objectives of this long-term study were to investigate the viability of two ecologically important reef-building coral species, massive Porites sp. and Stylophora pistilata, exposed to high pCO2(or low pH) conditions and to observe possible changes in physiologically related parameters as well as skeletal isotopic composition. Fragments of Porites sp. and S. pistilata were kept for 6-14 months under controlled aquarium conditions characterized by normal and elevated pCO2 conditions, corresponding to pHTvalues of 8.09, 7.49, and 7.19, respectively. In contrast with shorter, and therefore more transient experiments, the long experimental timescale achieved in this study ensures complete equilibration and steady state with the experimental environment and guarantees that the data provide insights into viable and stably growing corals. During the experiments, all coral fragments survived and added new skeleton, even at seawater omega arag <1, implying that the coral skeleton is formed by mechanisms under strong biological control. Measurements of boron (B), carbon (C) and oxygen (O) isotopic composition of skeleton, C isotopic composition of coral tissue and symbiont zooxanthellae, along with physiological data (such as skeletal growth, tissue biomass, zooxanthellae cell density and chlorophyll concentration) allow for a direct comparison with corals living under normal conditions and sampled simultaneously. Skeletal growth and zooxanthellae density were found to decrease, whereas coral tissue biomass (measured as protein concentration) and zooxanthellae chlorophyll concentrations increased under high pCO2 (low pH) conditions. Both species showed similar trends of delta11B depletion and delta18O enrichment under reduced pH, whereas the delta13C results imply species-specific metabolic response to high pCO2 conditions. The skeletal delta11B values plot above seawater delta11B vs. pH borate fractionation curves calculated using either the theoretically derived deltaB value of 1.0194 (Kakihana et al., Bull. Chem. Soc. Jpn. 50(1977), 158) or the empirical deltaB value of 1.0272 (Klochko et al., EPSL 248 (2006), 261). However, the effective deltaB must be greater than 1.0200 in order to yield calculated coral skeletal delta11B values for pH conditions where omega arag >1. The delta11B vs. pH offset from the literature seawater delta11B vs. pH fractionation curves suggests a change in the ratio of skeletal material laid down during dark and light calcification and/or an internal pH regulation, presumably controlled by ion-transport enzymes. Finally, seawater pH significantly influences skeletal delta13C and delta18O. This must be taken into consideration when reconstructing paleo-environmental conditions from coral skeleton
Resumo:
This collection contains measurements of vegetation and soil surface cover measured on the plots of the different sub-experiments at the field site of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. The following series of datasets are contained in this collection: 1. Measurements of vegetation cover, i.e. the proportion of soil surface area that is covered by different categories of plants per estimated plot area. Data was collected on the plant community level (sown plant community, weed plant community, dead plant material, and bare ground) and on the level of individual plant species in case of the species that have been sown into the plots to create the gradient of plant diversity.
Resumo:
The growth and development of the aragonitic CaCO3 otoliths of teleost fish could be vulnerable to processes resulting from ocean acidification. The potential effects of an increase in atmospheric CO2 on the calcification of the otoliths were investigated by rearing Atlantic cod Gadus morhua L. larvae in 3 pCO2 concentrations-control (370 µatm), medium (1800 µatm) and high (4200 µatm)-from March to May 2010. Increased otolith growth was observed in 7 to 46 d post hatch (dph) cod larvae at elevated pCO2 concentrations. The sagittae and lapilli were usually largest in the high pCO2 treatment followed by the medium and control treatments. The greatest difference in mean otolith surface area (normalized to fish length) was for sagittae at 11 dph, with medium and high treatments being 46 and 43% larger than the control group, respectively. There was no significant pCO2 effect on the shape of the otoliths nor were there any trends in the fluctuating asymmetry, defined as the difference between the right and left sides, in relation to the increase in otolith growth from elevated pCO2.