85 resultados para Russian Federation
Resumo:
Volumes of Holocene (10 000 years) terrigenous sediments and annnal sediment supply in the Laptev Sea were evaluated from average thickness of the Holocene veneer. Volumes of deposits supplied from various sediment sourees and by different proeesses (abrasion of hinterland and island shores, river discharge, eolian input, drifting ice) were diseriminating of deposition in the eoastal zone, at river/sea barrier, and in the shelf basin itself. Accumulation by drifting iee and the role of local sea bottom erosion were also considered. Total amount of sediments transported from the Laptev Sea shelf to Amundsen and Nansen Basins of the Aretie Ocean was compared with other Russian Aretie seas.
Resumo:
Large amounts of dust responsible for bright colors of atmospheric precipitation in the temperate, subpolar and polar zones of the northern hemisphere have been rarely observed. In the twentieth century and in the beginning of the twenty first century in the Northern European Russia such events were not registered up to March 25-26, 2008. At that time in some parts of the Arkhangel'sk region, Komi Republic, and Nenets Autonomous Area atmospheric precipitation as sleet and rain responsible for sand- and saffron colors of ice crust formation on the snow surface was observed. During detailed mineralogical, geochemical, pollen, diatom and meteorological investigations it was established that semidesert and steppe regions of the Northwest Kazakhstan, Volgograd and Astrakhan' regions, and Kalmykia are the main sources of the yellow dust.
Resumo:
Polygonal tundra, thermokarst basins and pingos are common and characteristic periglacial features of arctic lowlands underlain by permafrost in Northeast Siberia. Modern polygonal mires are in the focus of biogeochemical, biological, pedological, and cryolithological research with special attention to their carbon stocks and greenhouse-gas fluxes, their biodiversity and their dynamics and functioning under past, present and future climate scenarios. Within the frame of the joint German-Russian DFG-RFBR project Polygons in tundra wetlands: state and dynamics under climate variability in Polar Regions (POLYGON) field studies of recent and of late Quaternary environmental dynamics were carried out in the Indigirka lowland and in the Kolyma River Delta in summer 2012 and summer 2013. Using a multidisciplinary approach, several types of polygons and thermokarst lakes were studied in different landscapes units in the Kolyma Delta in 2012 around the small fishing settlement Pokhodsk. The floral and faunal associations of polygonal tundra were described during the fieldwork. Ecological, hydrological, meteorological, limnological, pedological and cryological features were studied in order to evaluate modern and past environmental conditions and their essential controlling parameters. The ecological monitoring and collection program of polygonal ponds were undertaken as in 2011 in the Indigirka lowland by a former POLYGON expedition (Schirrmeister et al. [eds.] 2012). Exposures, pits and drill cores in the Kolyma Delta were studied to understand the cryolithological structures of frozen ground and to collect samples for detailed paleoenvironmental research of the late Quaternary past. Dendrochronological and ecological studies were carried out in the tree line zone south of the Kolyma Delta. Based on previous work in the Indigirka lowland in 2011 (Schirrmeister et al. [eds.] 2012), the environmental monitoring around the Kytalyk research station was continued until the end of August 2012. In addition, a classical exposure of the late Pleistocene permafrost at the Achchaygy Allaikha River near Chokurdakh was studied. The ecological studies near Pokhodsk were continued in 2013 (chapter 13). Other fieldwork took place at the Pokhodsk-Yedoma-Island in the northwestern part of the Kolyma Delta.
Resumo:
Oil polluted and not oil polluted soils (crude oil hydrocarbons contents: 20-92500 mg/kg dry soil mass) under natural grass and forest vegetation and in a bog in the Russian tundra were compared in their principal soil ecological parameters, the oil content and the microbial indicators. CFE biomass-C, dehydrogenase and arylsulfatase activity were enhanced with the occurrence of crude oil. Using these parameters for purposes of controlling remediation and recultivation success it is not possible to distinguish bctween promotion of microbial activity by oil carbon or soil organic carbon (SOC). For this reason we think that these parameters are not appropriate to indicate a soil damage by an oil impact. In contrast the metabolie quotient (qC02), calculated as the ratio between soil basal respiration and the SIR biomass-C was adequate to indicate a high crude oil contamination in soil. Also, the ß-glucosidase activity (parameter ß-GL/SOC) was correlated negatively with oil in soil. The indication of a soil damage by using the stress parameter qCO, or the specific enzyme activities (activity/SOC) minimizes the promotion effect of the recent SOC content on microbial parameters. Both biomass methods (SIR, CFE) have technical problems in application for crude oil-contaminated and subarctic soils. CFE does not reflect the low C_mic level of the cold tundra soils. We recommend to test every method for its suitability before any data collection in series as well as application for cold soils and the application of ecophysiological ratios as R_mic/C_mic, C_mic/SOC or enzymatic activity/SOC instead of absolute data.