834 resultados para Late Quaternary
Resumo:
Paleotemperature estimates calculated by the SIMMAX Modern Analog Technique are presented for two gravity cores from the Rio Grande Rise, one from the Brazil Slope, and one from the Ceara Rise. The estimates are based on comparisons between modern and fossil planktonic foraminiferal assemblages and were carried out on samples from Quaternary sediments. Estimated warm-season temperatures from the Rio Grande Rise (at approx. 30° S) range from around 19°C to 24°C, with some coincidence of warm peaks with interglacial stages. The temperature estimates (also warm-season) from the more tropical Brazil Slope (at approx. 8° S) and Ceara Rise (at approx. 4° N) cores are more stable, remaining between 26°C and 28°C throughout most of their lengths. This fairly stable situation in the tropical western Atlantic is interrupted in oxygen isotope stage 6 by a significant drop of 2-3°C in both of these cores. Temperature estimates from the uppermost samples in all cores compare very well to the modern-day measured values. Affinities of some foraminiferal species for warmer or cooler surface temperatures are identified within the temperature range of the examined samples based on their abundance values. Especially notable among the warmer species are, Globorotalia menardii, Globigerinita glutinata, Globigerinoides ruber, and Globigerinoides sacculifer. Species indicative of cooler surface temperatures include Globorotalia inflata, Globigerina bulloides, Neogloboquadrina pachyderma, and Globigerina falconensis. A cluster analysis was carried out to assist in understanding the degree of variation which occurs in the foraminiferal assemblages, and how temperature differences influence the faunal compositions of the samples. It is demonstrated that fairly similar samples may have unexpectedly different estimated temperatures due to small differences in key species and, conversely, quite different assemblages can result in similar or identical temperature estimates which confirms that other parameters than just temperature affect faunal content.
Resumo:
A series of cores from east of New Zealand have been examined to determine the paleoceanographic history of the late Quaternary in the SW Pacific using planktonic foraminiferal data. Distinct shifts of species can be seen between glacial and interglacial times especially south of Chatham Rise east of South Island. Foraminiferal fragmentation ratios and benthic/planktonic foraminiferal ratios both show increased dissolution during glacials, especially isotope stage 2 to the south of Chatham Rise. The present-day Subtropical Convergence appears to be tied to the Chatham Rise at 44°S, but during glacial times this rise separated cold water to the south from much warmer water to the north, with an associated strong thermal gradient across the rise. We estimate that this gradient could have presented as much as an 8°C temperature change across 4°C of latitude during the maximum of the last ice age. There is only weak evidence of the Younger Dryas cool event, but there is a clear climatic optimum between 8 and 6.4 ka with temperatures 1°-2°C higher than the present day. The marine changes compare well with vegetational changes on both South and North Island.
Resumo:
Strontium isotope stratigraphy was used to date five discrete horizons within CRP-1. Early and late Quaternary (0.87-1.3 Ma and 0-0.67 Ma respectively) age sediments overlie a major sequence boundary at 43.15 meters below sea floor (mbsf). This hiatus is estimated to account for ~16 m.y. of missing section. Early Miocene (16.6-~20.8-25 Ma) age deposits below this boundary are in turn cut by multiple erosion surface representing hiatus is of between 0.2 and 1.2 m.y. Estimated minimum sedimentation rates range between 0.9 and 2.8 cm/k.y. in the Quaternary, and 1.5 and 6.4 cm/ky in the lower Miocene.
Resumo:
Marine sediments from the Portuguese shelf are influenced by environmental changes in the surrounding continental and marine environment. These are largely controlled by the North Atlantic Oscillation, but additional impacts may arise from episodic tsunamis. In order to investigate these influences, a high resolution multi-proxy study has been carried out on a 5.4 m long gravity core and five box cores from the Tagus prodelta on the western Portuguese margin, incorporating geochemical (Corg/Ntotal ratios, d13Corg, d15N, d18O, Corg and CaCO3 content) and physical sediment properties (magnetic susceptibility, grain-size). Subsurface data of the five box cores indicate no major effect of early postdepositional alteration. Surface data show a higher fraction of terrigenous organic material close to the river mouth and in the southern prodelta. Gravity core GeoB 8903 covers the last 3.2 kyrs with a temporal resolution of at least 0.1 cm/yr. Very high sedimentation rates between 69 and 140 cm core depth indicate a possible disturbance of the record by the AD1755 tsunami, although no evidence for a disturbance is observed in the data. Sea surface temperature and salinity on the prodelta, the local budget of marine NO3- as well as the provenance of organic matter remained virtually constant during the past 3.2 kyrs. A positive correlation between magnetic susceptibility (MS) and North Atlantic Oscillation (NAO) is evident for the past 250 years, coinciding with a negative correlation between mean grain-size and NAO. This is assigned to a constant riverine supply of fine material with high MS, which is diluted by the riverine input of a coarser, low-MS component during NAO negative, high-precipitation phases. End-member modelling of the lithic grain-size spectrum supports this, revealing a third, coarse lithic component. The high abundance of this coarse end-member prior to 2 kyr BP is interpreted as the result of stronger bottom currents, concentrating the coarse sediment fraction by winnowing. As continental climate was more arid prior to 2 kyr BP (Subboreal), the coarse end-member may also consist of dust from local sources. A decrease in grain-size and CaCO3 content after 2 kyr BP is interpreted as a result of decreasing wind strength. The onset of a fining trend and a further decrease in CaCO3 around AD900 occurs simultaneous to climatic variations, reconstructed from eastern North Atlantic records. A strong increase in MS between AD1400 and AD1500 indicates higher lithic terrigenous input, caused by deforestation in the hinterland.
Resumo:
Benthic foraminifer and delta13C data from Site 849, on the west flank of the East Pacific Rise (0°11 'N, 110°31'W; 3851 m), give relatively continuous records of deep Pacific Ocean stable isotope variations between 0 and 5 Ma. The mean sample spacing is 4 k.y. Most analyses are from Cibicides wuellerstorfi, but isotopic offsets relative to Uvigerina peregrina appear roughly constant. Because of its location west of the East Pacific Rise, Site 849 yields a suitable record of mean Pacific Ocean delta13C, which approximates a global oceanic signal. The ~100-k.y.-period climate cycle, which is prevalent in delta18O does not dominate the long-term delta13C record. For delta13C, variations in the ~400- and 41-k.y. periods are more important. Phase lags of delta13C relative to ice volume in the 41- and 23-k.y. bands are consistent with delta13C as a measure of organic biomass. A model-calculated exponential response time of 1-2 k.y. is appropriate for carbon stored in soils and shallow sediments responding to glacial-interglacial climate change. Oceanic delta13C leads ice volume slightly in the 100-k.y. band, and this suggests another process such as changes in continental weathering to modulate mean river delta13C at long periods. The delta13C record from Site 849 diverges from that of Site 677 in the Panama Basin mostly because of decay of 13C-depleted organic carbon in the relatively isolated Panama Basin. North Atlantic to Pacific delta13C differences calculated using published data from Sites 607 and 849 reveal variations in Pliocene deep water within the range of those of the late Quaternary. Maximum delta13C contrast between these sites, which presumably reflects maximum influx of high-delta13C northern source water into the deep North Atlantic Ocean, occurred between 1.3 and 2.1 Ma, well after the initiation of Northern Hemisphere glaciation. Export of high-delta13C North Atlantic Deep Water from the Atlantic to the circumpolar Antarctic, as recorded by published delta13C data from Subantarctic Site 704, appears unrelated to the North Atlantic-Pacific delta13C contrast. To account for this observation, we suggest that deep-water formation in the North Atlantic reflects northern source characteristics, whereas export of this water into the circumpolar Antarctic reflects Southern Hemisphere wind forcing. Neither process appears directly linked to ice-volume variations.
Resumo:
A wide variety of environmental records is necessary for analysing and understanding the complex Late Quaternary dynamics of permafrost-dominated Arctic landscapes. A NE Siberian periglacial key region was studied in detail using sediment records, remote sensing data, and terrain modelling, all incorporated in a geographical information system (GIS). The study area consists of the Bykovsky Peninsula and the adjacent Khorogor Valley in the Kharaulakh Ridge situated a few kilometres southeast of the Lena Delta. In this study a comprehensive cryolithological database containing information from 176 sites was compiled. The information from these sites is based on the review of previously published borehole data, outcrop profiles, surface samples, and our own field data. These archives cover depositional records of three periods: from Pliocene to Early Pleistocene, the Late Pleistocene and the Holocene. The main sediment sequences on the Bykovsky Peninsula consist of up to 50 m thick ice-rich permafrost deposits (Ice Complex) that were accumulated during the Late Pleistocene. They were formed as a result of nival processes around extensive snowfields in the Kharaulakh Ridge, slope processes in these mountains (such as in the Khorogor Valley), and alluvial/proluvial sedimentation in a flat accumulation plain dominated by polygonal tundra in the mountain foreland (Bykovsky Peninsula). During the early to middle Holocene warming, a general landscape transformation occurred from an extensive Late Pleistocene accumulation plain to a strongly thermokarst-dominated relief dissected by numerous depressions. Thermokarst subsidence had an enormous influence on the periglacial hydrological patterns, the sediment deposition, and on the composition and distribution of habitats. Climate deterioration, lake drainage, and talik refreezing occurred during the middle to late Holocene. The investigated region was reached by the post-glacial sea level rise during the middle Holocene, triggering thermo-abrasion of ice-rich coasts and the marine inundation of thermokarst depressions.
Resumo:
A high-resolution (~4-5cm/kyr) giant piston core record (MD962085) retrieved during an IMAGES II-NAUSICAA cruise from the continental slope of the southeast Atlantic Ocean reveals striking variations in planktonic foraminifer faunal abundances and sea-surface temperatures (SST) during the past 600 000 yr. The location and high-quality sedimentary record of the core provide a good opportunity to assess the variability of the Benguela Current system and associated important features of the ocean-climate system in the southeast Atlantic. The planktonic foraminifer faunal abundances of the core are dominated by three assemblages: (1) Neogloboquadrina pachyderma (right coiling) + Neogloboquadrina dutertrei, (2) Globigerina bulloides, and (3) Globorotalia inflata. The assemblage of N. pachyderma (right coiling) + N. dutertrei shows distinctive abundance changes which are nearly in-phase with glacial-interglacial variations. The high abundances of this assemblage are associated with major glacial conditions, possibly representing low SST/high nutrient level conditions in the southwestern Africa margin. In contrast, the G. bulloides and G. inflata assemblages show greater high-frequency abundance change patterns, which are not parallel to the glacial-interglacial changes. These patterns may indicate rapid oceanic frontal movements from the south, and a rapid change in the intensity of the Benguela upwelling system from the east. A single episode of maximum abundances of a polar water species N. pachyderma (left coiling) occurred in the beginning of stage 9 (~340-330 kyr). The event of the maximum occurrence of this species shown in this record may indicate instability in the Benguela coastal upwelling, or the Antarctic polar front zone position. A winter season SST estimate using transfer function techniques for this record shows primarily glacial-interglacial variations. The SST is maximal during the transitions from the major glacial to interglacial stages (Terminations I, II, IV, V), and is associated with the abundance maxima of a warm water species indicator Globigerinoides ruber. Cross-spectral analyses of the SST record and the SPECMAP stack reveal statistically significant concentrations of variance and coherencies in three major orbital frequency bands. The SST precedes changes in the global ice volume in all orbital frequency bands, indicating a dominant southern Hemispheric climate effect over the Benguela Current region in the southeast Atlantic.
Resumo:
Recent geochemical models invoke ocean alkalinity changes, particularly in the surface Southern Ocean, to explain glacial age pCO2 reduction. In such models, alkalinity increases in glacial periods are driven by reductions in North Atlantic Deep Water (NADW) supply, which lead to increases in deep-water nutrients and dissolution of carbonate sediments, and to increased alkalinity of Circumpolar Deep Water upwelling in the surface Southern Ocean. We use cores from the Southeast Indian Ridge and from the deep Cape Basin in the South Atlantic to show that carbonate dissolution was enhanced during glacial stages in areas now bathed by Circumpolar Deep Water. This suggests that deep Southern Ocean carbonate ion concentrations were lower in glacial stages than in interglacials, rather than higher as suggested by the polar alkalinity model [Broecker and Peng, 1989, doi:10.1029/GB001i001p00015]. Our observations show that changes in Southern Ocean CaCO3 preservation are coherent with changes in the relative flux of NADW, suggesting that Southern Ocean carbonate chemistry is closely linked to changes in deepwater circulation. The pattern of enhanced dissolution in glacials is consistent with a reduction in the supply of nutrient-depleted water (NADW) to the Southern Ocean and with an increase of nutrients in deep water masses. Carbonate mass accumulation rates on the Southeast Indian Ridge (3200-3800 m), and in relatively shallow cores (<3000 m) from the Kerguelen Plateau and the South Pacific were significantly reduced during glacial stages, by about 50%. The reduced carbonate mass accumulation rates and enhanced dissolution during glacials may be partly due to decreases in CaCO3:Corg flux ratios, acting as another mechanism which would raise the alkalinity of Southern Ocean surface waters. The polar alkalinity model assumes that the ratio of organic carbon to carbonate production on surface alkalinity is constant. Even if overall productivity in the Southern Ocean were held constant, a decrease in the CaCO3:Corg ratio would result in increased alkalinity and reduced pCO2 in Southern Ocean surface waters during glacials. This ecologically driven surface alkalinity change may enhance deepwater-mediated changes in alkalinity, and amplify rapid changes in pCO2.
Resumo:
A high-resolution biochronology is presented for the Late Quaternary of the central Mediterranean. In the Late Pleistocene-Holocene successions three assemblage zones are distinguished on the basis of frequency patterns of planktic foraminifera. The age of these zones is determined by Accelerator Mass Spectrometry (AMS)14C dating. The zonal boundaries are dated at 12,700 yr B.P. (the end of Termination Ia) and 9600 yr B.P. (the start of Termination Ib), respectively. The AMS dates show that major changes in the planktic and benthic realms occurred synchronously over wide areas, although records of individual species may show important regional differences. In the studied areas, resedimentation processes revealed by anomalous successions of14C dates, play a far more important role than indicated by the sedimentological and micropaleontological data. Possibly these processes contribute to the very high accumulation rates in the glacial Zone III. Although the AMS technique has increased the accuracy of14C-measurements, admixture of older carbonate may still lead to substantial age differences between areas with different sedimentary regimes.