87 resultados para Lüneburger Heide


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A total of 1,690 individual narwhal nonecholocation sounds were recorded over 5 h in 2007 and 2009. Each sound was classified as either tonal (FM) or pulsed (amplitude modulated). Omnipresent in all the recordings were the songs of bearded seals, Erignathus barbatus, which were often so loud and numerous that the lower frequency ranges of narwhal sounds could not be distinguished.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nachdem zwischen den Salinarstrukturen von Heide und Albersdorf in ein ein ausgedehnten Kaolinsandvorkommen neben dem schon lange bestehenden Wasserwerk der Stadt Heide die Wasserwerke Linden (Wasserbeschaffungsverband Lunden-Hennstedt) und Nordhastedt (DEA) errichtet werden konnten und ein weiteres in Erfde geplant ist, lag es nahe, am Rand der Husumer Geest zwischen den Strukturen Oldenswort-Mildstedt und Heide-Hollingstedt ein ähnliches Vorkommen für die Wasserversorgung von Eiderstedt zu erschließen. In älteren Bohrungen waren Kaolinsande in größerer Mächtigkeit bereits im Untereidergebiet nachgewiesen worden.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is a paucity of information on abundance, densities, and habitat selection of narwhals Monodon monoceros in the offshore pack ice of Baffin Bay, West Greenland, despite the critical importance of winter foraging regions and considerable sea ice declines in the past decades. We conducted a double-platform visual aerial survey over a narwhal wintering ground to obtain pack ice densities and develop the first fully corrected abundance estimate using point conditional mark-recapture distance sampling. Continuous video recording and digital images taken along the trackline allowed for in situ quantification of winter narwhal habitat and for the estimation of fine-scale narwhal habitat selection and habitat-specific sighting probabilities. Abundance at the surface was estimated at 3484 (coefficient of variation [CV] = 0.46) including whales missed by observers. The fully corrected abundance of narwhals was 18 044 (CV = 0.46), or approximately one-quarter of the entire Baffin Bay population. The narwhal wintering ground surveyed (~9500 km**2) had 2.4 to 3.2% open water based on estimates from satellite imagery (NASA Moderate Resolution Imaging Spectroradiometer) and 1565 digital photographic images collected on the trackline. Thus, the ~18 000 narwhals had access to 233 km**2 of open water, resulting in an average density of ~77 narwhals/km**2 open water. Narwhal sighting probability near habitats with <10% or 10 to 50% open water was significantly higher than sighting probability in habitats with >50% open water, suggesting narwhals select optimal foraging areas in dense pack ice regardless of open water availability. This study provides the first quantitative ecological data on densities and habitat selection of narwhals in pack ice foraging regions that are rapidly being altered with climate change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mineral dust has a large impact on regional and global climate, depending on its particle size. Especially in the Atlantic Ocean downwind of the Sahara, the largest dust source on earth, the effects can be substantial but are poorly understood. This study focuses on seasonal and spatial variations in particle size of Saharan dust deposition across the Atlantic Ocean, using an array of submarine sediment traps moored along a transect at 12° N. We show that the particle size decreases downwind with increased distance from the Saharan source, due to higher gravitational settling velocities of coarse particles in the atmosphere. Modal grain sizes vary between 4 and 33 µm throughout the different seasons and at five locations along the transect. This is much coarser than previously suggested and incorporated into climate models. In addition, seasonal changes are prominent, with coarser dust in summer, and finer dust in winter and spring. Such seasonal changes are caused by transport at higher altitudes and at greater wind velocities during summer than in winter. Also the latitudinal migration of the dust cloud, associated with the Intertropical Convergence Zone, causes seasonal differences in deposition as the summer dust cloud is located more to the north, and more directly above the sampled transect. Furthermore, increased precipitation and more frequent dust storms in summer coincide with coarser dust deposition. Our findings contribute to understanding Saharan dust transport and deposition relevant for the interpretation of sedimentary records for climate reconstructions, as well as for global and regional models for improved prediction of future climate.