1000 resultados para Cibicidoides sp., d13C
Resumo:
The relationship between planktonic and benthic foraminiferal stable-isotope values and oceanographic conditions and factors controlling isotopic variations are discussed on the basis of oxygen and carbon isotopic analyses of 192 modern surface and Last Glacial Maximum (LGM) samples from the South China Sea (SCS). The harmonic variation of benthic delta18O in surface sediments with water depth and temperature implies that the temperature is the main factor influencing benthic delta18O variations. Planktonic delta18O fluctuates with sea surface temperature (SST) and salinity (SSS). The N-S temperature gradient results in planktonic delta18O decreasing from the northeast to the south. Cool, saline waters driven by the winter monsoon are interpreted to have been responsible for the high delta18O values in the northeast SCS. The East Asian monsoons not only bring nutrients into the South China Sea and maintain high nutrient concentration levels at the southwestern and northeastern ends, which cause depleted delta13C both in planktonic (surface) and benthic (bottom) samples but also reduce planktonic/benthic delta18O differences. The distribution of delta18O and delta13C in the surface and LGM samples are strikingly similar, indicating that the impact of SST and SSS has been maintained, and nutrient inputs, mainly from the northeastern and southwestern ends, have been controlled by monsoons since the LGM. Comparisons of the modern and LGM delta18O indicate a difference of about 3.6 °C in bottom-water temperature and a large surface-to-bottom temperature gradient during the LGM as compared to today.
Resumo:
The stable carbon and oxygen isotope composition of different benthic foraminiferal species of the latest Campanian and earliest Maastrichtian from Ocean Drilling Project Hole 690C (Weddell Sea, southern South Atlantic, ~1800 m paleowater depth) have been investigated. The total range of measured isotope values of all samples exceeds ~4 per mil for delta 13C and 1.1 per mil for delta 18O. Carbon isotope values of proposed deep infaunal species are generally similar or only slightly lower when compared to proposed epifaunal to shallow infaunal species. Interspecific differences vary between samples probably reflecting temporal changes in organic carbon fluxes to the sea floor. Constantly lower delta 13C values for Pullenia marssoni and Pullenia reussi suggest the deepest habitat for these species. The strong depletion of delta 13C values by up to 3 per mil within lenticulinids may be attributed to a deep infaunal microhabitat, strong vital effects, or different feeding strategy when compared to other species or modern lenticulinids. The mean delta 18O values reveal a strong separation of epifaunal to shallow infaunal and deep infaunal species. Epifaunal to shallow infaunal species are characterized by low delta 18O values, deep infaunal species by higher values. This result possibly reflects lower metabolic rates and longer life cycles of deep infaunal species or the operating of a pore water [CO3]2- effect on the benthic foraminiferal stable isotopes. Pyramidina szajnochae shows an enrichment of oxygen isotopes with test size comprising a total of 0.6 per mil between 250 and 1250 µm shell size. Although delta 13C lacks a corresponding trend these data likely represent the presence of changes in metabolic rates during ontogenesis. These results demonstrate the general applicability of multi-species stable isotope measurements of pristine Cretaceous benthic foraminifera to reconstruct past microhabitats and to evaluate biological and environmental effects on the stable isotope composition.
Resumo:
We generated benthic isotope records from Ocean Drilling Program (ODP) site 981 on the Feni drift (2173 m water depth) and from ODP site 983 on the Gardar drift (1983 m water depth) to examine the interaction between North Atlantic Deep Water (NADW) and Glacial North Atlantic Intermediate Water (GNAIW) formation from 2.0 to 1.4 Ma. We find NADW at both sites during interglacial periods, and a mix of NADW and Southern Ocean water at the Feini drift during most glacial periods. Prior to 1.7 Ma we find no evidence ofr GNAIW at the Gardar drift site. Instead, glacial Gardar drift delta13C values are as low or lower than values for all other sites in the North Atlantic and reflect continued glacial overflow from the Nordic seas. After 1.7 Ma Gardar drift delta13C values increase and suggest that there was GNAIW at the Gardar drift site during some glacial intervals. Overall, we find that NADW and GNAIW production changed around 1.7 Ma in concert with changes in sea surface temperature and salinity and in the Earth's obliquity cycle.
Resumo:
Ocean Drilling Program Site 658, cored below a major upwelling cell offshore Cap Blanc, contains a largely undisturbed hemipelagic sediment section spanning the Brunhes Chron and the early Quaternary and late Pliocene. The companion Site 659 recovered a complete and undisturbed Neogene profile further offshore that serves as a nonupwelling pelagic reference section. Oxygen and carbon isotope ratios in benthic (C. wuellerstorfi and in part Uvigerina sp.) and planktonic foraminifers (G. inflata) provide a climatic record of high resolution for the Brunhes Chron. At Site 658 the record extends back to the early Pleistocene and late Pliocene. The standard oxygen isotope record of the last 730,000 yr is markedly refined by a well-documented high-frequency variation (e.g., by a new "aborted" ice age at stage 13.2 and by Younger-Dryas style climatic setbacks during most terminations). In the late Pliocene, the numerical oxygen isotope stage taxonomy was extended back to stage 137 about 3.3 Ma ago. In comparison with published records, stage 114 at 2.7 Ma represents the first major glaciation event, when 18O was short-term enriched up to a middle Pleistocene glacial d18O level. About 3.17 Ma ago (stage 133), the interglacial oxygen isotope values of C. wuellerstorfi started to increase by 0.5 per mil until 2.7 Ma and then remained largely constant until the Holocene. Based on the d13C difference between C. wuellerstorfi and G. inflata, the dissolved CO2 in the ambient bottom water of Site 658 was dominated by the flux of particulate carbon from the overlying upwelling cell during the last 630,000 yr. In contrast, the advection of (upper) North Atlantic Bottom Water dominated in the control of the local CO2 content during the early Pleistocene and late Pliocene.
Resumo:
Southern Ocean sediments reveal a spike in authigenic uranium 127,000 years ago, within the last interglacial, reflecting decreased oxygenation of deep water by Antarctic Bottom Water (AABW). Unlike ice age reductions in AABW, the interglacial stagnation event appears decoupled from open ocean conditions and may have resulted from coastal freshening due to mass loss from the Antarctic ice sheet. AABW reduction coincided with increased North Atlantic Deep Water (NADW) formation, and the subsequent reinvigoration in AABW coincided with reduced NADW formation. Thus, alternation of deep water formation between the Antarctic and the North Atlantic, believed to characterize ice ages, apparently also occurs in warm climates.
Resumo:
Benthic foraminiferal faunas from three bathyal sequences provide a proxy record of oceanographic changes through the mid-Pleistocene transition (MPT) on either side of the Subtropical Front (STF), east of New Zealand. Canonical correspondence analyses show that factors related to water depth, latitude and climate cycles were more significant than oceanographic factors in determining changes in faunal assemblage composition over the last 1 Ma. Even so, mid-Pleistocene faunal changes are recognizable and can be linked to inferred palaeoceanographic causes. North of the largely stationary STF the faunas were less variable than to the south, perhaps reflecting the less extreme glacial-interglacial fluctuations in the overlying Subtropical Surface Water. Prior to Marine Isotope Stage (MIS) 21 and after MIS 15, the northern faunas had fairly constant composition, but during most of the MPT faunal composition fluctuated in response to climate-related food-supply variations. Faunal changes through the MPT suggest increasing food supply and decreasing dissolved bottom oxygen. South of the STF, beneath Subantarctic Surface Water, mid-Pleistocene faunas exhibited strong glacial-interglacial fluctuations, inferred to be due to higher interglacial nutrient supply and lower oxygen levels. The most dramatic faunal change in the south occurred at the end of the MPT (MIS 17- 12). with an acme of Abditodentrix pseudothalmanni, possibly reflecting higher carbon flux and lower bottom oxygen. This study suggests that the mid-Pleistocene decline and extinction of a group of elongate, cylindrical deep-sea foraminifera may have been related to decreased bottom oxygen concentrations as aresult of slower deep-water currents.
Resumo:
Oxygen and carbon isotope ratios in benthic foraminifers have been determined at 10 cm intervals through the top 59 m of DSDP Hole 552A. This provides a glacial record of remarkable resolution for the late Pliocene and Pleistocene. The major glacial event which marked the onset of Pleistocene-like glacial-interglacial alternations was at about 2.4 m.y. ago. These very high-resolution data do not support the notion of significant Northern Hemisphere glaciation between 3.2 and 2.4 m.y. ago.
Resumo:
The Late Quaternary benthic foraminifera of four deep-sea cores off Western Australia (ODP 122-760A, ODP 122-762B, BMR96GC21 and RC9-150) have been examined for evidence of increased surface productivity to explain the anomalously low sea-surface paleotemperatures inferred by planktic foraminifera for the last and penultimate glaciations. The delta13C trends of Cibicidoides wuellerstorfi, and differences between the delta13C trends of planktics (Globigerinoides sacculifer) and benthics (C. wuellerstorfi) in the four cores indicate that during stage 6 bottom waters were significantly depleted in delta13C, and strong delta13C gradients were established in the water column, while during stage 2 and the Last Glacial Maximum, delta13C trends did not differ greatly from that of the Holocene. Two main assemblages of benthic foraminifera were identified by principal component analyses: one dominated by Uvigerina peregrina, another dominated by U. proboscidea. Abundance of these Uvigerinids, and of taxa preferring an infaunal microhabitat, and of Epistominella exigua and Bulimina aculeata indicate that episodes of high influx of particulate organic matter were established in most sites during glacial episodes, and particularly so during stage 6, while evidence for upwelling during the Last Glacial Maximum is less strong. The Penultimate Glaciation upwellings were established within the areas of low sea-surface paleotemperature indicated by planktic foraminifera. During the Last Interglacial Climax, upwelling appears to have been established in an isolated region offshore from a strengthened Leeuwin Current off North West Cape. Last Glacial Maximum delta13C values of C. wuellerstorfi at waterdepths of less than 2000 m show smaller than global mean glacial-interglacial changes suggesting the development of a deep hydrological front. A similar vertical stratification/bathyal front was also established during the Penultimate Glaciation.
Resumo:
Detailed stable isotopic and calcium carbonate records (with a sampling resolution of 3000 yr.) from the middle Miocene section of hydraulic piston corer (HPC) Hole 574A provide a sequence that records the major shift in the oxygen isotopic composition of the world's oceans that occurred at about 14 Ma. The data suggest that this transition was rapid and spans about 30,000 yr. of sediment deposition. In intervals before and after the shift, the mean d18O values are characterized by a constant mean with a high degree of variability. The degree of variability in both the d18O and d13C records is comparable to that observed for the Pliocene and earliest Pleistocene and does not show a significant change before or after the major shift in the d18O record. Whereas the oxygen isotopic record is characterized by relatively stable mean values before and after the middle Miocene event, the d13C record shows a number of significant offsets in the mean value separated by intervals of high-frequency variations. Time and frequency domain analysis of all records from Hole 574A indicate that the frequency components shown to be related to orbital changes in the Pleistocene record are also present in the middle Miocene. The high variability observed in the Site 574 isotopic records places important constraints on models describing the role of formation of the Antarctic ice sheet during the middle Miocene climatic transitions. Thus, HPC Hole 574A provides a valuable sequence for detailed study of climatic variability during an important time in the Earth's history, although we cannot provide a definitive explanation of the major oxygen isotopic event of the middle Miocene.