117 resultados para Caspian Sea Region--Maps--Early works to 1800
Resumo:
Inventory of some important datasets related to the physical characteristics of the seafloor surrounding the Azores Archipelago. The objective is to ensure that our compilation is readily available for any researchers interested in this type information but also to support institutions responsible for the management and conservation of local resources.
Resumo:
During the 19th cruise of the research vessel "Meteor" between Madeira and Lisbon 260 strains of aerobic heterotrophic bacteria have been isolated from sediment samples collected from different depths. These strains have been identified mainly as members of the genera Marinovibrio, Pseudomonas, and Bacillus. The majority of bacteria isolated from shallow areas (Josephine Seamount) were sea water media requiring Marinovibrio and Pseudornonas spp. but in sediment samples taken from depths exceeding 1000 m the probably terrestrial sporeforming Bacillus spp. predominated. Further investigations in the same region during the 23rd cruise of the "Meteor" demonstrated that about 30 to 50% of the sporeforming bacteria found in the sediment samples could be isolated from dormant spores in situ. The remaining more than 50 % of sporeformers in the deep sea region examined are believed to be metabolic active cells.
Resumo:
Early arc volcanism during Eocene to Oligocene in the Izu forearc region was investigated during ODP Legs 125 and 126 in 1989, and effusive and intrusive volcanics were recovered from Leg 125 Site 786. These rocks were all classified into boninites and associated rocks by Leg 125 Shipboard Scientific Party, and they concluded that boninitic volcanism had occurred before 40 Ma, and arc tholeiitic volcanism began after 40 Ma. In this study, lava flows and breccias that classified into boninite series are divided into two groups, tholeiite and boninite, based on petrographical and petrological properties. Both series are also distinguished by bulk rock composition. It is considered that the sources of both rock types have similar depleted compositions because of their similar, very low bulk HFSE concentrations. We suggest that boninitic and tholeiitic volcanism occurred closely in time and space, and reflected different temperature and water condition.
Resumo:
A shallow gas depth-contour map covering the Skagerrak-western Baltic Sea region has been constructed using a relatively dense grid of existing shallow seismic lines. The digital map is stored as an ESRI shape file in order to facilitate comparison with other data from the region. Free gas usually occurs in mud and sandy mud but is observed only when sediment thickness exceeds a certain threshold value, depending on the water depth of the area in question. Gassy sediments exist at all water depths from approx. 20 m in the coastal waters of the Kattegat to 360 m in the Skagerrak. In spite of the large difference in water depths, the depth of free gas below seabed varies only little within the region, indicating a relatively fast movement of methane in the gas phase towards the seabed compared to the rate of diffusion of dissolved methane. Seeps of old microbial methane occur in the northern Kattegat where a relatively thin cover of sandy sediments exists over shallow, glacially deformed Pleistocene marine sediments. Previous estimates of total methane escape from the area may be correct but the extrapolation of local methane seepage rate data to much larger areas on the continental shelf is probably not justified. Preliminary data on porewater chemistry were compared with the free gas depth contours in the Aarhus Bay area, which occasionally suffers from oxygen deficiency, in order to examine if acoustic gas mapping may be used for monitoring the condition of the bay.