826 resultados para Artemisia capillaris
Resumo:
Aim To test whether the radiation of the extremely rich Cape flora is correlated with marine-driven climate change. Location Middle to Late Miocene in the south-east Atlantic and the Benguela Upwelling System (BUS) off the west coast of South Africa. Methods We studied the palynology of the thoroughly dated Middle to Late Miocene sediments of Ocean Drilling Program (ODP) Site 1085 retrieved from the Atlantic off the mouth of the Orange River. Both marine upwelling and terrestrial input are recorded at this site, which allows a direct correlation between changes in the terrestrial flora and the marine BUS in the south-east Atlantic. Results Pollen types from plants of tropical affinity disappeared, and those from the Cape flora gradually increased, between 10 and 6 Ma. Our data corroborate the inferred dating of the diversification in Aizoaceae c. 8 Ma. Main conclusions Inferred vegetation changes for the Late Miocene south-western African coast are the disappearance of Podocarpus-dominated Afromontane forests, and a change in the vegetation of the coastal plain from tropical grassland and thicket to semi-arid succulent vegetation. These changes are indicative of an increased summer drought, and are in step with the development of the southern BUS. They pre-date the Pliocene uplift of the East African escarpment, suggesting that this did not play a role in stimulating vegetation change. Some Fynbos elements were present throughout the recorded period (from 11 Ma), suggesting that at least some elements of this vegetation were already in place during the onset of the BUS. This is consistent with a marine-driven climate change in south-western Africa triggering substantial radiation in the terrestrial flora, especially in the Aizoaceae.
Resumo:
Sedimentary records from California's Northern Channel Islands and the adjacent Santa Barbara Basin (SBB) indicate intense regional biomass burning (wildfire) at the Ållerød-Younger Dryas boundary (~13.0-12.9 ka) (All age ranges in this paper are expressed in thousands of calendar years before present [ka]. Radiocarbon ages will be identified and clearly marked "14C years".). Multiproxy records in SBB Ocean Drilling Project (ODP) Site 893 indicate that these wildfires coincided with the onset of regional cooling and an abrupt vegetational shift from closed montane forest to more open habitats. Abrupt ecosystem disruption is evident on the Northern Channel Islands at the Ållerød-Younger Dryas boundary with the onset of biomass burning and resulting mass sediment wasting of the landscape. These wildfires coincide with the extinction of Mammuthus exilis [pygmy mammoth]. The earliest evidence for human presence on these islands at 13.1-12.9 ka (~11,000-10,900 14C years) is followed by an apparent 600-800 year gap in the archaeological record, which is followed by indications of a larger-scale colonization after 12.2 ka. Although a number of processes could have contributed to a post 18 ka decline in M. exilis populations (e.g., reduction of habitat due to sea-level rise and human exploitation of limited insular populations), we argue that the ultimate demise of M. exilis was more likely a result of continental scale ecosystem disruption that registered across North America at the onset of the Younger Dryas cooling episode, contemporaneous with the extinction of other megafaunal taxa. Evidence for ecosystem disruption at 13-12.9 ka on these offshore islands is consistent with the Younger Dryas boundary cosmic impact hypothesis [Firestone et al., 2007, doi:10.1073/pnas.0706977104].
Resumo:
Seven sediment cores from the cruises of the "Meteor" and "Valdivia" were examined palynologically. The cores were retrieved from the lower continental slope in the area of between 33.5° N and 8° N, off the West African coast. Most of the cores contain sediments from the last Glacial and Interglacial period. In some cases, the Holocene sediments are missing. Some individual cores contain sediments also from earlier Glacial and Interglacial periods. The main reason for making this palynological study was to find out the differences between the vegetation of Glacial and Interglacial periods in those parts of West Africa which at present belong to the Mediterranean zone, the Sahara and the zones of the savannas and tropical forests. In today's Mediterranean vegetation zone at core 33.5° N, forests and deciduous forests in particular, are missing during Glacial conditions. Semi-deserts are found instead of these. In the early isotope stage 1, there is a very significant development of forests which contain evergreen oaks; this is the Mediterranean type of vegestation development. The Sahara type of vegetation development is shown in four cores from between 27° N and 19° N. The differences between Glacial and Interglacial periods are very small. It must be assumed therefore that in this latitudes, both Glacial and Interglacial conditions gave rise to desert generally. The results are in favour of a slightly more arid climate during Glacial and more humid one during Interglacial periods. The southern boundary of the Sahara and the adjacent savannas with grassland and tropical woods were situated more to the south during the Glacial periods than they were during the Interglacial ones. In front of today's savanna belt, it can be seen from the palynological results that there are considerable differences between the vegetation of Glacial and Interglacial periods. The woods are more important in Interglacial periods. During the Glacial periods these are replaced from north to south decreasingly by grassland (savanna and rainforest type of vegetation development). The southern limit of the Sahara during stage 2 was somewhat between 12° N and 8° N which is between 1.5 and 5 degrees in latitude further south than it i s today. Not only do these differences in climate and vegetation apply to the maximum of the last Glacial and for the Holocene, but they apparently apply also to the older Glacial and Interglacial periods, where they have been found in the profiles. The North African deset belt can be said to have expanded during Glacial times both towards the north and towards the south. All the available evidence of this study indicates that the grass land or the semi-desert of the Southern Europe cam einto connection with those of the N Africa; there could not have been any forest zone between them. The present study was also a good opportunity for investigating some of the basic marine palynological problems. The very well known overrepresentation of pollen grains of the genus Pinus in marine sediments can be traced as fa as 21° N. The present southern limit for the genus Pinus is on the Canaries and on the African continent as approximately 31° N. Highest values of Ephedra pollen grains even occur south of the main area of the present distribution of that genus. These does not seem to be any satisfactory explanation for this. In general, it would appear that the transport of pollen grains from the north is more important than transport from the south. The results so far, indicate strongly that further palynological studies are necessary. These should concentrate particularly on cores from between 33° N and 27° N as well as between 17° N and 10° N. It would also be useful to have a more detailed examination of sediments from the last Intergalcial period (substage 5 e). Absolute pollen counts and more general examination of surface samples would be desirable. Surface samples should be taken from the shelf down to the bottom of the continental slope in different latitudes.
Resumo:
Investigating the processes that led to the end of the last interglacial period is relevant for understanding how our ongoing interglacial will end, which has been a matter of much debate. A recent ice core from Greenland demonstrates climate cooling from 122,000 years ago driven by orbitally controlled insolation, with glacial inception at 118,000 years ago. Here we present an annually resolved, layer-counted record of varve thickness, quartz grain size and pollen assemblages from a maar lake in the Eifel (Germany), which documents a late Eemian aridity pulse lasting 468 years with dust storms, aridity, bushfire and a decline of thermophilous trees at the time of glacial inception. We interpret the decrease in both precipitation and temperature as an indication of a close link of this extreme climate event to a sudden southward shift of the position of the North Atlantic drift, the ocean current that brings warm surface waters to the northern European region. The late Eemian aridity pulse occurred at a 65° N July insolation of 416 W/m**2, close to today's value of 428 W/m**2, and may therefore be relevant for the interpretation of present-day climate variability.
Resumo:
Previous pollen analytical studies on sediments from the pleistocene lake basin at Samerberg, situated on the northern edge of the Bavarian Alps (47°45' N, 12°12' E, 607 m a.s.l.) had been performed on samples taken from cores and exposures close to the southern shore of the former lake. After geoelectric and refraction-seismic measurements had shown that the lake basin had been much deeper in its northern part, another core was taken where maximum depth could be expected. The corer penetrated three moraines, two of them lying above pollen-bearing sediments, and one below them, and reached the hard rock (Kössener Kalk) at a depth of 93 m. Two forest phases could be identified by pollen analysis. The pollen record begins abruptly in a forest phase at the end of a spruce-dominated period when fir started to spread (DA 1, DA = pollen zone). Following this, Abies (fir) was the main tree species at Samerberg, Picea being second, and deciduous trees were almost non-existent. First box (Buxus) was of major importance in the fir forests (DA 2), but later on beech (Fagus) and wing-nut (Pterocarya) spread (DA 3). Finally this forest gave way to a spruce forest with pine (DA 4). The beginning and the end of this interglacial cycle are not recorded. Its vegetational development is different from the eemian one known from earlier studies at Samerberg. It is characterized by the occurrence of Abies together with Buxus, Pterocarya and Fagus. A similar association of woody species is known only from the Holsteinian age deposits in an area ranging from England to Poland, though at no other place these species were such important constituents of the vegetation as at Samerberg. Therefore zone 1 to 4 are attributed to the Holsteinian interglacial period. The younger forest phase, separated from the interglacial by a stadial with open vegetation (DA 5), seems to be completely represented, though its sediments are disturbed, apparently by sliding which caused repetition of same-age-sediments in the core (DA 7a, b, c) The vegetational development is simple. A juniper phase (DA 6) was followed by reforestation with spruce, accompanied by some fir (DA 7, 9). Finally pine became the dominant species (DA 9). The simple vegetational development of this younger forest phase does not allow a safe correlation with one of the known pre-eemian interstadials, but for stratigraphical reasons it can be related best to the Dömnitz-interglacial, which among others is also known as Wacken- or Holstein-II-interglacial. Possibly another phase of reforestation is indicated at the end of the following stadial (DA 10). But due to an erosional unconformity nothing than the rise of the juniper curve can be stated. It was only after this sequence of forest phases and periods with open vegetation that glaciers reached the Samerberg area again.
Resumo:
AMS-14C dated sediment cores from the Ob and Yenisei estuaries and the adjacent inner Kara Sea were investigated to determine the siliclastic and organic carbon fluxes and their relationship to paleoenvironmental changes. The variability of sediment fluxes during Holocene times is related to the post-glacial sea-level rise and changes in river discharge and coastal erosion input. Whereas during the late/middle Holocene most of the terrigenous sediments were deposited in the estuaries and the areas directly off the estuaries, huge amounts of sediments accumulated on the Kara Sea shelf farther north during the early Holocene before about 9 Cal. kyrs. BP. The maximum accumulation at that time is related to the lowered sea level, increased coastal erosion, and increased river discharge due to the final stage of mountain deglaciation of the Putoran Massif. Increased supply of Yenisei-derived material indicated by peak magnetic susceptibility values probably occurred in climate-related pulses culminating near 11, 10, and 9 Cal. kyrs. BP. As sea level rose, the main Holocene depocenter migrated southward. Based on hydrogen index values and n-alkanes, the organic matter is predominantly of terrigenous origin. Maximum accumulation rates of 1.5 to more than 6 g/cm2/y occurred in the early Holocene sediments, suggesting more humid climatic conditions with an increased vegetation cover in the source area at that time. In general, high organic carbon accumulation rates characterize the estuaries and the inner Kara Sea as important sink for terrigenous organic carbon. A high-resolution record of Holocene variability of magnetic susceptibility (MS) in an AMS14C-dated sediment core from the northern Yenisei estuary may indicate natural variability of Arctic climate change and river discharge on a centennial to millenial time scale. Short-term maxima in MS probably related to warmer climate, enhanced precipitation, intensified weathering/erosion and increased river discharge, display a frequency of about 300 to 700 years.
Resumo:
The high-altitude lake Tso Moriri (32°55'46'' N, 78°19'24'' E; 4522 m a.s.l.) is situated at the margin of the ISM and westerly influences in the Trans-Himalayan region of Ladakh. Human settlements are rare and domestic and wild animals are concentrating at the alpine meadows. A set of modern surface samples and fossil pollen from deep-water TMD core was evaluated with a focus on indicator types revealing human impact, grazing activities and lake system development during the last ca. 12 cal ka BP. Furthermore, the non-pollen palynomorph (NPP) record, comprising remains of limnic algae and invertebrates as well as fungal spores and charred plant tissue fragments, were examined in order to attest palaeolimnic phases and human impact, respectively. Changes in the early and middle Holocene limnic environment are mainly influenced by regional climatic conditions and glacier-fed meltwater flow in the catchment area. The NPP record indicates low lake productivity with high influx of freshwater between ca. 11.5 and 4.5 cal ka BP which is in agreement with the regional monsoon dynamics and published climate reconstructions. Geomorphologic observations suggest that during this period of enhanced precipitation the lake had a regular outflow and contributed large amounts of water to the Sutlej River, the lower reaches of which were integral part of the Indus Civilization area. The inferred minimum fresh water input and maximum lake productivity between ca. 4.5-1.8 cal ka BP coincides with the reconstruction of greatest aridity and glaciation in the Korzong valley resulting in significantly reduced or even ceased outflow. We suggest that lowered lake levels and river discharge on a larger regional scale may have caused irrigation problems and harvest losses in the Indus valley and lowlands occupied by sedentary agricultural communities. This scenario, in turn, supports the theory that, Mature Harappan urbanism (ca. 4.5-3.9 cal ka BP) emerged in order to facilitate storage, protection, administration, and redistribution of crop yields and secondly, the eventual collapse of the Harappan Culture (ca. 3.5-3 cal ka BP) was promoted by prolonged aridity. There is no clear evidence for human impact around Tso Moriri prior to ca. 3.7 cal ka BP, with a more distinct record since ca. 2.7 cal ka BP. This suggests that the sedimentary record from Tso Moriri primarily archives the regional climate history.
Resumo:
Ice-wedge polygon (IWP) mires in the Arctic and Subarctic are extremely vulnerable to climatic and environmental change. We present the results of a multidisciplinary paleoenvironmental study on IWPs in the northern Yukon, Canada. High-resolution laboratory analyses were carried out on a permafrost core and the overlying seasonally thawed (active) layer, from a low-centered IWP located in a drained lake basin on Herschel Island. In relation to 14 Accelerator Mass Spectrometry (AMS) radiocarbon dates spanning the last 5000 years, we report sedimentary data including grain size distribution and biogeochemical parameters (organic carbon, nitrogen, C/N ratio, d13C), stable water isotopes (d18O, dD), as well as fossil pollen, plant macrofossil and diatom assemblages. Three sediment units (SUs) correspond to the main stages of deposition (1) in a thermokarst lake (SU1: 4950 to 3950 cal yrs BP), (2) during transition from lacustrine to palustrine conditions after lake drainage (SU2: 3950 to 3120 cal yrs BP), and (3) in palustrine conditions in the IWP field that developed after drainage (SU3: 3120 cal yrs BP to AD 2012). The lacustrine phase (pre 3950 cal yrs BP) is characterized by planktonic-benthic and pioneer diatoms species indicating circumneutral waters, and very few plant macrofossils. The pollen record has captured a regional signal of relatively stable vegetation composition and climate for the lacustrine stage of the record until 3950 cal yrs BP. Palustrine conditions with benthic and acidophilic species characterize the peaty shallow-water environments of the low-centered IWP. The transition from lacustrine to palustrine conditions was accompanied by acidification and rapid revegetation of the lake bottom within about 100 years. Since the palustrine phase we consider the pollen record as a local vegetation proxy dominated by the plant communities growing in the IWP. Ice-wedge cracking in water-saturated sediments started immediately after lake drainage at about 3950 cal yrs BP and led to the formation of an IWP mire. Permafrost aggradation through downward closed-system freezing of the lake talik is indicated by the stable water isotope record. The originally submerged IWP center underwent gradual drying during the past 2000 years. This study highlights the sensitivity of permafrost landscapes to climate and environmental change throughout the Holocene.
Resumo:
The Longling Coal Mine (W. Yunnan) is situated in an area of substantial geotectonic activity. Its Late Pliocene palynoflora is of considerable interest, since the area represents a centre of biodiversity. Eighty-two palynomorphs belonging to 61 families were recovered from the lignite. The palynoflora is dominated by angiosperms (68.3%), with ferns (24.4%), gymnosperms (4.9%) and algae (2.4%). Comparisons indicate that most of the palynoflora was derived from the Montane Humid Evergreen Broad-leaved Forest, with lesser contributions from the Tsuga dumosa Forest and Evergreen Coniferous Broad-leaved Mixed Forest, as well as the Montane Mossy Evergreen Broad-leaved Forest. This indicates that the Late Pliocene climate was cooler than that of the present. In the course of the accumulation of the lignite, the climate underwent five major phases of warming and cooling.
Resumo:
(Einleitung) Im süddeutschen Jungmoränengebiet wurden während der letzten 25 Jahre verschiedene vegetationsgeschichtliche Arbeiten durchgeführt, die der Untersuchung der Späteiszeit galten. Die wichtigsten von ihnen stammen von G. Lang (1952), A. Bertsch (1961), H. Müller (1962) und H. Schmeidl (1971). Ohne Zweifel müssen die dabei gewonnenen Ergebnisse in anderen Landschaften des nördlichen Alpenvorlandes überprüft und verschiedene Probleme weiterhin verfolgt werden, wie z. B. das der Definition und Umgrenzung der Bölling-Zeit und der Älteren Tundrenzeit s. str. und die Abhängigkeit der Vegetationsentwicklung von der Meereshöhe. Die vorliegende Studie ging auch auf die Notwendigkeit zurück, die spätglazialen Ablagerungen bei dem Tonwerk Kolbermoor nahe Rosenheim, einer der klassischen Stätten der Quartärforschung im nördlichen Alpenvorland, einer vegetationsgeschichtlichen Neubearbeitung zu unterziehen. Die Untersuchungen wurden auf benachbarte Seen, den Sims-See und den Hofsrätter See, ausgedehnt, da die Ergebnisse von Kolbermoor faziell beeinflußt schienen (Niedermoore) und an limnischem Material überprüft werden mußten.
Resumo:
Vast areas on the Tibetan Plateau are covered by alpine sedge mats consisting of different species of the genus Kobresia. These mats have topsoil horizons rich in rhizogenic organic matter which creates turfs. As the turfs have recently been affected by a complex destruction process, knowledge concerning their soil properties, age and pedogenesis are needed. In the core area of Kobresia pygmaea mats around Nagqu (central Tibetan Plateau, ca. 4500 m a.s.l.), four profiles were subjected to pedological, paleobotanical and geochronological analyses concentrating on soil properties, phytogenic composition and dating of the turf. The turf of both dry K. pygmaea sites and wet Kobresia schoenoides sites is characterised by an enrichment of living (dominant portion) and dead root biomass. In terms of humus forms, K. pygmaea turfs can be classified as Rhizomulls mainly developed from Cambisols. Wet-site K. schoenoides turfs, however, can be classified as Rhizo-Hydromors developed from Histic Gleysols. At the dry sites studied, the turnover of soil organic matter is controlled by a non-permafrost cold thermal regime. Below-ground remains from sedges are the most frequent macroremains in the turf. Only a few pollen types of vascular plants occur, predominantly originating from sedges and grasses. Large amounts of microscopic charcoal (indeterminate) are present. Macroremains and pollen extracted from the turfs predominantly have negative AMS 14C ages, giving evidence of a modern turf genesis. Bulk-soil datings from the lowermost part of the turfs have a Late Holocene age comprising the last ca. 2000 years. The development of K. pygmaea turfs was most probably caused by an anthropo(zoo)-genetically initiated growth of sedge mats replacing former grass-dominated vegetation ('steppe'). Thus the turfs result from the transformation of pre-existing topsoils comprising a secondary penetration and accumulation of roots. K. schoenoides turfs, however, are characterised by a combined process of peat formation and penetration/accumulation of roots probably representing a (quasi) natural wetland vegetation.