963 resultados para Alkenone, d13C
Resumo:
The largest increase in export production in the eastern Pacific of the last 5.3 Myr (million years) occurred between 2.2 and 1.6 Myr, a time of major climatic and oceanographic reorganization in the region. Here, we investigate the causes of this event using reconstructions of export production, nutrient supply and oceanic conditions across the Pliocene-Pleistocene in the eastern equatorial Pacific (EEP) for the last 3.2 Myr. Our results indicate that the export production peak corresponds to a cold interval marked by high nutrient supply relative to consumption, as revealed by the low bulk sedimentary 15N/14N (d15N) and alkenone-derived sea surface temperature (SST) values. This ?0.6 million year long episode of enhanced delivery of nutrients to the surface of the EEP was predominantly initiated through the upwelling of nutrient-enriched water sourced in high latitudes. In addition, this phenomenon was likely promoted by the regional intensification of upwelling in response to the development of intense Walker and Hadley atmospheric circulations. Increased nutrient consumption in the polar oceans and enhanced denitrification in the equatorial regions restrained nutrient supply and availability and terminated the high export production event.
Resumo:
Paleoceanographic studies using benthic foraminiferal Cd as a nutrient tracer have provided a robust means of reconstructing glacial Atlantic Ocean water mass geometry, but a paucity of data from the South Atlantic above 1200 m has limited investigation of Antarctic Intermediate Water (AAIW) configuration and formation. A new Cd depth profile from Brazil margin sediments suggests that AAIW penetrated northward at 1100 m to at least 27°S in the glacial Atlantic. It exhibited substantially reduced d13Cas values, confirming preliminary evidence that this AAIW was unique to the glacial Atlantic and that it formed differently than today, with less atmospheric contact.
Resumo:
We present a 15 kyr sea surface temperature (SST) record for a high sedimentation rate core (KNR51-29GGC) from the Feni Drift off of Ireland, based on an organic geochemical technique for paleotemperature estimation, U37 K'. We compare the U37 K' temperature record to planktonic foraminiferal delta18O and foraminiferal assemblage SST estimates from the same sample horizons. U37 K' gives SST estimates of 13°C for the early deglacial and 18°C for the Holocene and Recent, whereas assemblages give estimates of 9°C and 13°C, respectively. As in nearby core V23-81, we find Ash Zone 1, the Younger Dryas increase in Neogloboquadrina pachyderma sinistral abundance, and maximum abundance of this species during glaciation. N. pachyderma dextral oxygen isotopic analyses have a late glacial to interglacial range of 1.5 per mil. A reduction of about 1 per mil in delta18O occurred at about 12 ka, whereas U37 K' and the foraminiferal fauna indicate a 2°C warming. This implies a 0.9 per mil salinity effect on delta18O which we attribute to meltwater freshening. All three parameters indicate cooling during the Younger Dryas. U37 K' SST estimates show that the major shift from deglacial to interglacial temperatures occurred after the Younger Dryas in termination 1b, in contrast to the assemblage data, which show this jump in SST at the end of the glaciation during termination Ia. Differences between the two SST estimators, which may result from their different (floral versus faunal) sources, are more pronounced between transitions Ia and Ib. This may reflect different habitats under the unusual sea surface conditions of the deglaciation.
Resumo:
Surface sediments from the eastern South Atlantic were investigated for their lipid biomarker contents and bulk organic geochemical characteristics to identify sources, transport pathways and preservation processes of organic components. The sediments cover a wide range of depositional settings with large differences in mass accumulation rates. The highest marine organic carbon (OC) contributions are detected along the coast, especially underlying the Benguela upwelling system. Terrigenous OC contributions are highest in the Congo deep-sea fan. Lipid biomarker fluxes are significantly correlated to the extent of oxygen exposure in the sediment. Normalization to total organic carbon (TOC) contents enabled the characterization of regional lipid biomarker production and transport mechanisms. Principal component analyses revealed five distinct groups of characteristic molecular and bulk organic geochemical parameters. Combined with information on lipid sources, the main controlling mechanisms of the spatial lipid distributions in the surface sediments are defined, indicating marine productivity related to river-induced mixing and oceanic upwelling, wind-driven deep upwelling, river-supply of terrigenous organic material, shallow coastal upwelling and eolian supply of plant-waxes.
Resumo:
The glacial-to-Holocene evolution of subarctic Pacific surface water stratification and silicic acid (Si) dynamics is investigated based on new combined diatom oxygen (d18Odiat) and silicon (d30Sidiat) isotope records, along with new biogenic opal, subsurface foraminiferal d18O, alkenone-based sea surface temperature, sea ice, diatom, and core logging data from the NE Pacific. Our results suggest that d18Odiat values are primarily influenced by changes in freshwater discharge from the Cordilleran Ice Sheet (CIS), while corresponding d30Sidiat are primarily influenced by changes in Si supply to surface waters. Our data indicate enhanced glacial to mid Heinrich Stadial 1 (HS1) NE Pacific surface water stratification, generally limiting the Si supply to surface waters. However, we suggest that an increase in Si supply during early HS1, when surface waters were still stratified, is linked to increased North Pacific Intermediate Water formation. The coincidence between fresh surface waters during HS1 and enhanced ice-rafted debris sedimentation in the North Atlantic indicates a close link between CIS and Laurentide Ice Sheet dynamics and a dominant atmospheric control on CIS deglaciation. The Bølling/Allerød (B/A) is characterized by destratification in the subarctic Pacific and an increased supply of saline, Si-rich waters to surface waters. This change toward increased convection occurred prior to the Bølling warming and is likely triggered by a switch to sea ice-free conditions during late HS1. Our results furthermore indicate a decreased efficiency of the biological pump during late HS1 and the B/A (possibly also the Younger Dryas), suggesting that the subarctic Pacific has then been a source region of atmospheric CO2.