77 resultados para Agilent


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Batch cultures of Isochrysis galbana (strain CCMP 1323) and Chrysotila lamellosa (strain CCMP 1307) were grown at salinity ca. 10 to ca. 35 and the alkenone distributions determined for different growth phases. UK'37 values decreased slightly with salinity for C. lamellosa but were largely unaffected for I. galbana except during the decline phase. The values decreased with incubation time in both species. The proportion of C37:4, used as proxy for salinity, increased in both species at 0.16-0.20% per salinity unit, except during the stationary phase for I. galbana. C37:4 was much more abundant in C. lamellosa (30-44%) than in I. galbana (4-12%). Although our results suggest that salinity has a direct effect on alkenone distributions, growth phase and species composition will also have a marked impact, complicating the use of alkenone distributions as a proxy for salinity in the marine environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ongoing process of ocean acidification already affects marine life and, according to the concept of oxygen- and capacity limitation of thermal tolerance (OCLTT), these effects may be exacerbated at the boarders of the thermal tolerance window. We studied the effects of elevated CO2 concentrations on clapping performance and energy metabolism of the commercially important scallop Pecten maximus. Individuals were exposed for at least 30 days to 4°C (winter) or to 10°C (spring/summer) at either ambient (0.04 kPa, normocapnia) or predicted future PCO2 levels (0.11 kPa, hypercapnia). Cold (4°C) exposed groups revealed thermal stress exacerbated by PCO2 indicated by a high mortality overall and its increase from 55% under normocapnia to 90% under hypercapnia. We therefore excluded the 4°C groups from further experimentation. Scallops at 10°C showed impaired clapping performance following hypercapnic exposure. Force production was significantly reduced although the number of claps was unchanged between normo- and hypercapnia exposed scallops. The difference between maximal and resting metabolic rate (aerobic scope) of the hypercapnic scallops was significantly reduced compared to normocapnic animals, indicating a reduction in net aerobic scope. Our data confirm that ocean acidification narrows the thermal tolerance range of scallops resulting in elevated vulnerability to temperature extremes and impairs the animal's performance capacity with potentially detrimental consequences for its fitness and survival in the ocean of tomorrow.