271 resultados para 2 sigma range
Resumo:
A multi-proxy study including sedimentological, mineralogical, biogeochemical and micropaleontological methods was conducted on sediment core PS69/849-2 retrieved from Burton Basin, MacRobertson Shelf, East Antarctica. The goal of this study was to depict the deglacial and Holocene environmental history of the MacRobertson Land-Prydz Bay region. A special focus was put on the timing of ice-sheet retreat and the variability of bottom-water formation due to sea ice formation through the Holocene. Results from site PS69/849-2 provide the first paleo-environmental record of Holocene variations in bottom-water production probably associated to the Cape Darnley polynya, which is the second largest polynya in the Antarctic. Methods included end-member modeling of laser-derived high-resolution grain size data to reconstruct the depositional regimes and bottom-water activity. The provenance of current-derived and ice-transported material was reconstructed using clay-mineral and heavy-mineral analysis. Conclusions on biogenic production were drawn by determination of biogenic opal and total organic carbon. It was found that the ice shelf front started to retreat from the site around 12.8 ka BP. This coincides with results from other records in Prydz Bay and suggests warming during the early Holocene optimum next to global sea level rise as the main trigger. Ice-rafted debris was then supplied to the site until 5.5 cal. ka BP, when Holocene global sea level rise stabilized and glacial isostatic rebound on MacRobertson Land commenced. Throughout the Holocene, three episodes of enhanced bottom-water activity probably due to elevated brine rejection in Cape Darnley polynya occured between 11.5 and 9 cal. ka BP, 5.6 and 4.5 cal. ka BP and since 1.5 cal. ka BP. These periods are related to shifts from warmer to cooler conditions at the end of Holocene warm periods, in particular the early Holocene optimum, the mid-Holocene warm period and at the beginning of the neoglacial. In contrast, between 7.7 and 6.7 cal. ka BP, brine rejection shut down, maybe owed to warm conditions and pronounced open-water intervals.
Resumo:
Absolute ages of plutonic rocks from mid-ocean ridges provide important constraints on the scale, timing and rates of oceanic crustal accretion, yet few such rocks have been absolutely dated. We present 206Pb/238U SHRIMP zircon ages from two ODP Drill Holes and a surface sample from Atlantis Bank on the Southwest Indian Ridge. We report ten new sample ages from 26-1430 m in ODP Hole 735B, and one from 57 m in ODP Hole 1105A. Including a previously published age, eleven samples from Hole 735B yield 206Pb/238U zircon crystallization ages that are the same, within error, overlap with the estimated magnetic age and are inferred to date the main period of crustal growth, the average age of analyses is 11.99 ± 0.12 Ma. Any differences in the ages of magmatic series and/or tectonic blocks within Hole 735B are unresolvable and eight well-constrained ages vary from 11.86 ± 0.20 Ma to 12.13 ± 0.21 Ma, a range of 0.27 ± 0.29 Ma, consistent with the duration of crustal accretion observed at the Mid-Atlantic Ridge. An age of 11.87 ± 0.23 Ma from Hole 1105A is within error of ages from Hole 735B and permits previous correlations made between zones of oxide-rich gabbros in each hole. Pb/U zircon ages > 0.5 Ma younger than the magnetic age are recorded in at least three samples from Atlantis Bank, one from Hole 735B and two collected along a fault scarp to the East. These young ages may date one or more off-axis events previously suggested from thermochronologic data and support the interpretation of a complex geological history following crustal accretion at Atlantis Bank. Together with results from the surface of Atlantis Bank, dating has shown that while the majority of Pb/U SHRIMP zircon ages record the short-lived (< 0.5 Ma) phase of crustal accretion on-axis, results from several samples precede and post-date this period by > 1 Ma suggesting a complex and prolonged magmatic/tectonic history for the crust at Atlantis Bank.
Resumo:
The timing and magnitude of sea-surface temperature (SST) changes in the tropical southern South China Sea (SCS) during the last 16,500 years have been reconstructed on a high-resolution, 14C-dated sediment core using three different foraminiferal transfer functions (SIMMAX28, RAM, FP-12E) and geochemical (Uk'37) SST estimates. In agreement with CLIMAP reconstructions, both the FP-12E and the Uk'37 SST estimates show an average late glacial-interglacial SST difference of 2.0°C, whereas the RAM and SIMMAX28 foraminiferal transfer functions show only a minor (0.6°C) or no consistent late glacial-interglacial SST change, respectively. Both the Uk'37 and the FP-12E SST estimates, as well as the planktonic foraminiferal delta18O values, indicate an abrupt warming (ca. 1°C in <200 yr) at the end of the last glaciation, synchronous (within dating uncertainties) with the Bølling transition as recorded in the Greenland Ice Sheet Project 2 (GISP2) ice core, whereas the RAM-derived deglacial SST increase appears to lag during this event by ca. 500 yr. The similarity in abruptness and timing of the warming associated with the Bølling transition in Greenland and the southern SCS suggest a true synchrony of the Northern Hemisphere warming at the end of the last glaciation. In contrast to the foraminiferal transfer function estimates that do not indicate any consistent cooling associated with the Younger Dryas (YD) climate event in the tropical SCS, the Uk'37 SST estimates show a cooling of ca. 0.2-0.6°C compared to the Bølling-Allerød period. These Uk'37 SST estimates from the southern SCS argue in favor of a Northern Hemisphere-wide, synchronous cooling during the YD period.
Resumo:
It is demonstrated by K-Ar analyses that the age of reversely magnetized basalts, which immediately predate magnetic Anomaly 24B, is 53.5 ± 1.9 m.y. Samples from deep levels appear to be grossly contaminated by an extraneous argon component with a uniform argon-40/argon-36 ratio 440. This component is thought to have been derived from fluids circulating in the lava pile during burial. The age result corroborates the assignment previously made to Anomaly 24B by Hailwood et al. (1979) and Lowrie and Alvarez (1981). It additionally suggests that lava extrusion formed part of a much larger magmatic event, which affected wide areas of the North Atlantic margins around the Paleocene/Eocene boundary, and can therefore probably be considered a good estimate of the age of this boundary. Initial 143Nd/144Nd ratios lie in the very restricted range 0.512920 ± 19 to 0.513026 ± 24 and initial 8 7Sr/86Sr ratios from ca. 0.703 to ca. 0.705. Acid leaching reduces the latter range to 0.70264 ± 4 to 0.70384 ± 4, suggesting that the higher 87Sr/86Sr ratios resulted from interaction with seawater. The array of data for treated samples is closely conformable on a 143Nd/144Nd-87Sr/86Sr diagram with the main oceanic mantle array and with previously published fields for Atlantic Ocean basalts. No evidence for any continental crustal contamination has been found. This suggests, but does not prove, that continental crust played no part in the genesis of these rocks.
Resumo:
A 10Be/9Be-based chronostratigraphy has been determined for ODP 181, Site 1121 sediment core, recovered from the foot of the Campbell Plateau, Southwest Pacific Ocean. This core was drilled through the Campbell 'skin drift' in ca. 4500 m water depth on the mid-western margin of the extensive Campbell Nodule Field, beneath the flow of the major cold-water Deep Western Boundary Current (DWBC). In the absence of detailed biostratigraphy, beryllium isotopes have provided essential time information to allow palaeo-environmental interpretation to be undertaken on the upper 7 m of the core. Measured 10Be/9Be ratios of sediment, and of ferromanganese nodules entrapped in the sediment, decrease systematically with depth in the core, in accordance with radioactive decay. However, the 10Be/9Be data diverge from ca. 3 m below the seafloor (mbsf) to the top of the core, giving rise to several possible geochronological models. The preferred model assumes that the measured 10Be/9Be ratios of the nodule rims reflect initial 10Be/9Be ratios equivalent to contemporary seawater, and that these can be used to derive the true age of the sediment where the nodules occur. The nodule rim ages can be then used to interpret the sediment 10Be/9Be data, which indicate an overall age to ca. 7 mbsf of ca. 17.5 Ma. The derived chronology is consistent with diatom biostratigraphy, which indicates an age of 2.2-3.6 Ma at 1 mbsf. Calculated sedimentation rates range from 8 to 95 cm m.y.**-1, with an overall rate to 7 mbsf of ca. 39 cm m.y.**-1. The lowest rates generally coincide with the occurrence of entrapped nodules, and reflect periods of increased bottom current flow causing net sediment loss. Growth rates of individual nodules decrease towards the top of the sediment core, similar to the observed decrease in growth rate from core to rim of seafloor nodules from the Campbell Nodule Field. This may be related to an overall increase in the vigour of the DWBC from ca. 10 Ma to the present.
Resumo:
In the deep-sea, the Paleocene-Eocene Thermal Maximum (PETM) is often marked by clay-rich condensed intervals caused by dissolution of carbonate sediments, capped by a carbonate-rich interval. Constraining the duration of both the dissolution and subsequent cap-carbonate intervals is essential to computing marine carbon fluxes and thus testing hypotheses for the origin of this event. To this end, we provide new high-resolution helium isotope records spanning the Paleocene-Eocene boundary at ODP Site 1266 in the South Atlantic. The extraterrestrial 3He, 3HeET, concentrations replicate trends observed at ODP Site 690 by Farley and Eltgroth (2003, doi:10.1016/S0012-821X(03)00017-7). By assuming a constant flux of 3HeET we constrain relative changes in accumulation rates of sediment across the PETM and construct a new age model for the event. In this new chronology the zero carbonate layer represents 35 kyr, some of which reflects clay produced by dissolution of Paleocene (pre-PETM) sediments. Above this layer, carbonate concentrations increase for ~165 kyr and remain higher than in the latest Paleocene until 234 +48/-34 kyr above the base of the clay. The new chronology indicates that minimum d13C values persisted for a maximum of 134 +27/-19 kyr and the inflection point previously chosen to designate the end of the CIE recovery occurs at 217 +44/-31 kyr. This allocation of time differs from that of the cycle-based age model of Röhl et al. (2007, doi:10.1029/2007GC001784) in that it assigns more time to the clay layer followed by a more gradual recovery of carbonate-rich sedimentation. The new model also suggests a longer sustained d13C excursion followed by a more rapid recovery to pre-PETM d13C values. These differences have important implications for constraining the source(s) of carbon and mechanisms for its subsequent sequestration, favoring models that include a sustained release
Resumo:
The purpose of this work is to study the mobility and budget of Fe isotopes in the oceanic crust and in particular during low-temperature interaction of seawater with oceanic basalt. We carried out this investigation using samples from Ocean Drilling Program (ODP) Site 801C drilled during Leg 129 and Leg 185 in Jurassic Pacific oceanic crust seaward of the Mariana Trench. The site comprises approximately 450 m of sediment overlying a section of 500 m of basalt, which includes intercalated pelagic and chemical sediments in the upper basaltic units and two low-temperature (10-30°C) ocherous Si-Fe hydrothermal deposits. Fe was chemically separated from 70 selected samples, and 57Fe/54Fe ratios were measured by MC-ICP-MS Isoprobe. The isotopic ratios were measured relative to an internal standard solution and are reported relative to the international Fe-standard IRMM-14. Based on duplicate measurements of natural samples, an external precision of 0.2? (2 sigma) has been obtained. The results indicate that the deep-sea sediment section has a restricted range of d57Fe, which is close to the igneous rock value. In contrast, large variations are observed in the basaltic section with positive d57Fe values (up to 2.05?) for highly altered basalts and negative values (down to ?2.49?) for the associated alteration products and hydrothermal deposits. Secondary Fe-minerals, such as Fe-oxyhydroxides or Fe-bearing clays (celadonite and saponite), have highly variable d57Fe values that have been interpreted as resulting from the partial oxidation of Fe(2+) leached during basalt alteration and precipitated as Fe(3+)-rich minerals. In contrast, altered basalts at Site 801C, which are depleted in Fe (up to 80%), display an increase in d57Fe values relative to fresh values, which suggest a preferential leaching of light iron during alteration. The apparent fractionation factor between dissolved Fe(2+) and Fe remaining in the mineral is from 0.5? to 1.3? and may be consistent with a kinetic isotope fractionation where light Fe is stripped from the minerals. Alternatively, the formation of secondary clays minerals, such as celadonite during basalt alteration may incorporate preferentially the heavy Fe isotopes, resulting in the loss of light Fe isotopes in the fluids. Because microbial processes within the oceanic crust are of potential importance in controlling rates of chemical reactions, Fe redox state and Fe-isotope fractionation, we evaluated the possible effect of this deep biosphere on Fe-isotope signatures. The Fe-isotope systematics presented in this study suggest that, even though iron behavior during seafloor weathering may be mediated by microbes, such as iron-oxidizers, d57Fe variations of more than 4? may also be explained by abiotic processes. Further laboratory experiments are now required to distinguish between various processes of Fe-isotope fractionation during seafloor weathering.
Resumo:
Radiocarbon age relationships between co-occurring planktic foraminifera, alkenones, and total organic carbon in sediments from the continental margins of southern Chile, northwest Africa, and the South China Sea were compared with published results from the Namibian margin. Age relationships between the sediment components are site-specific and relatively constant over time. Similar to the Namibian slope, where alkenones have been reported to be 1000-4500 years older than co-occurring foraminifera, alkenones were significantly (~1000 years) older than co-occurring foraminifera in the Chilean margin sediments. In contrast, alkenones and foraminifera were of similar age (within 2 sigma error or better) in the NW African and South China Sea sediments. Total organic matter and alkenone ages were similar off Namibia (age difference TOC alkenones: 200-700 years), Chile (100-450 years), and NW Africa (360-770 years), suggesting minor contributions of preaged terrigenous material. In the South China Sea, total organic carbon is significantly (2000-3000 years) older owing to greater inputs of preaged terrigenous material. Age offsets between alkenones and planktic foraminifera are attributed to lateral advection of organic matter. Physical characteristics of the depositional setting, such as seafloor morphology, shelf width, and sediment composition, may control the age of co-occurring sediment components. In particular, offsets between alkenones and foraminifera appear to be greatest in deposition centers in morphologic depressions. Aging of organic matter is promoted by transport. Age offsets are correlated with organic richness, suggesting that formation of organic aggregates is a key process.
Resumo:
Non-glaciated Arctic lowlands in north-east Siberia were subjected to extensive landscape and environmental changes during the Late Quaternary. Coastal cliffs along the Arctic shelf seas expose terrestrial archives containing numerous palaeoenvironmental indicators (e.g., pollen, plant macro-fossils and mammal fossils) preserved in the permafrost. The presented sedimentological (grain size, magnetic susceptibility and biogeochemical parameters), cryolithological, geochronological (radiocarbon, accelerator mass spectrometry and infrared-stimulated luminescence), heavy mineral and palaeoecological records from Cape Mamontov Klyk record the environmental dynamics of an Arctic shelf lowland east of the Taymyr Peninsula, and thus, near the eastern edge of the Eurasian ice sheet, over the last 60 Ky. This region is also considered to be the westernmost part of Beringia, the non-glaciated landmass that lay between the Eurasian and the Laurentian ice caps during the Late Pleistocene. Several units and subunits of sand deposits, peat-sand alternations, ice-rich palaeocryosol sequences (Ice Complex) and peaty fillings of thermokarst depressions and valleys were presented. The recorded proxy data sets reflect cold stadial climate conditions between 60 and 50 Kya, moderate inderstadial conditions between 50 and 25 Kya and cold stadial conditions from 25 to 15 Kya. The Late Pleistocene to Holocene transition, including the Allerød warm period, the early to middle Holocene thermal optimum and the late Holocene cooling, are also recorded. Three phases of landscape dynamic (fluvial/alluvial, irregular slope run-off and thermokarst) were presented in a schematic model, and were subsequently correlated with the supraregional environmental history between the Early Weichselian and the Holocene.
Resumo:
Radiogenic isotopes of hafnium (Hf) and neodymium (Nd) are powerful tracers for water mass transport and trace metal cycling in the present and past oceans. However, due to the scarcity of available data the processes governing their distribution are not well understood. Here we present the first combined dissolved Hf and Nd isotope and concentration data from surface waters of the Atlantic sector of the Southern Ocean. The samples were collected along the Zero Meridian, in the Weddell Sea and in the Drake Passage during RV Polarstern expeditions ANT-XXIV/3 and ANT-XXIII/3 in the frame of the International Polar Year (IPY) and the GEOTRACES program. The general distribution of Hf and Nd concentrations in the region is similar. However, at the northernmost station located 200 km southwest of Cape Town a pronounced increase of the Nd concentration is observed, whereas the Hf concentration is minimal, suggesting much less Hf than Nd is released by the weathering of the South African Archean cratonic rocks. From the southern part of the Subtropical Front (STF) to the Polar Front (PF) Hf and Nd show the lowest concentrations (<0.12 pmol/kg and 10 pmol/kg, respectively), most probably due to the low terrigenous flux in this area and efficient scavenging of Hf and Nd by biogenic opal. In the vicinity of landmasses the dissolved Hf and Nd isotope compositions are clearly labelled by terrigenous inputs. Near South Africa Nd isotope values as low as epsilon-Nd = -18.9 indicate unradiogenic inputs supplied via the Agulhas Current. Further south the isotopic data show significant increases to epsilon-Hf = 6.1 and epsilon-Nd = -4.0 documenting exchange of seawater Nd and Hf with the Antarctic Peninsula. In the open Southern Ocean the Nd isotope compositions are relatively homogeneous (epsilon-Nd ~ -8 to -8.5) towards the STF, within the Antarctic Circumpolar Current, in the Weddell Gyre, and the Drake Pasage. The Hf isotope compositions in the entire study area only show a small range between epsilon-Hf = +6.1 and +2.8 support Hf to be more readily released from young mafic rocks compared to old continental ones. The Nd isotope composition ranges from epsilon-Nd = -18.9 to -4.0 showing Nd isotopes to be a sensitive tracer for the provenance of weathering inputs into surface waters of the Southern Ocean.
Resumo:
Tephra fallout layers and volcaniclastic deposits, derived from volcanic sources around and on the Papuan Peninsula, form a substantial part of the Woodlark Basin marine sedimentary succession. Sampling by the Ocean Drilling Program Leg 180 in the western Woodlark Basin provides the opportunity to document the distribution of the volcanically-derived components as well as to evaluate their chronology, chemistry, and isotope compositions in order to gain information on the volcanic sources and original magmatic systems. Glass shards selected from 57 volcanogenic layers within the sampled Pliocene-Pleistocene sedimentary sequence show predominantly rhyolitic compositions, with subordinate basaltic andesites, basaltic trachy-andesites, andesites, trachy-andesites, dacites, and phonolites. It was possible to correlate only a few of the volcanogenic layers between sites using geochemical and age information apparently because of the formation of strongly compartmentalised sedimentary realms on this actively rifting margin. In many cases it was possible to correlate Leg 180 volcanic components with their eruption source areas based on chemical and isotope compositions. Likely sources for a considerable number of the volcanogenic deposits are Moresby and Dawson Strait volcanoes (D'Entrecasteaux Islands region) for high-K calc-alkaline glasses. The Dawson Strait volcanoes appear to represent the source for five peralkaline tephra layers. One basaltic andesitic volcaniclastic layer shows affinities to basaltic andesites from the Woodlark spreading tip and Cheshire Seamount. For other layers, a clear identification of the sources proved impossible, although their isotope and chemical signatures suggest similarities to south-west Pacific subduction volcanism, e.g. New Britain and Tonga- Kermadec island arcs. Volcanic islands in the Trobriand Arc (for example, Woodlark Island Amphlett Islands and/or Egum Atoll) are probable sources for several volcaniclastic layers with ages between 1.5 to 3 Ma. The Lusancay Islands can be excluded as a source for the volcanogenic layers found during Leg 180. Generally, the volcanogenic layers indicate much calc-alkaline rhyolitic volcanism in eastern Papua since 3.8 Ma. Starting at 135 ka, however, peralkaline tephra layers appear. This geochemical change in source characteristics might reflect the onset of a change in geotectonic regime, from crustal subduction to spreading, affecting the D'Entrecasteaux Islands region. Initial 143Nd/144Nd ratios as low as 0.5121 and 0.5127 for two of the tephra layers are interpreted as indicating that D'Entrecasteaux Islands volcanism younger than 2.9 Ma occasionally interacted with the Late Archean basement, possibly reflecting the mobilisation of the deep continental crust during active rift propagation.
Resumo:
Be and Nd isotope compositions and metal concentrations (Mn, Fe, Co, Ni, and Cu) of surface and subsurface ferromanganese hardground crusts from Ocean Drilling Program Leg 194 Marion Plateau Sites 1194 and 1196 provide new insights into the crusts' genesis, growth rates, and ages. Metal compositions indicate that the hardgrounds, which have grown on erosional surfaces in water depths of <400 m because of strong bottom currents, are not pure hydrogenetic precipitates. Nevertheless, the ratios between cosmogenic 10Be and stable 9Be in hardgrounds from the present-day seafloor at Site 1196 between 1 x 10**-7 and 1.5 x 10**-7 are within the range of values expected for Pacific seawater, which shows that the hardgrounds recorded the isotope composition of ambient seawater. This is also confirmed by their Nd isotope composition (epsilon Nd between -3 and 0). The 10Be/9Be ratios in the up to 30-mm-thick and partly laminated hardgrounds do not show a decrease with depth, which suggests high growth rates on the present-day seafloor. The subsurface crust at Site 1194 (117 m below the seafloor) grew during a sedimentation hiatus, when bottom currents in the late Miocene prevented sediment accumulation on the carbonate platform during a sea level lowstand. The age of 8.65 ± 0.50 Ma for this crust obtained from 10Be-based dating agrees well with the combined seismostratigraphic and biostratigraphic evidence, which suggests an age for the hiatus between 7.7 and 11.8 Ma.
Resumo:
The first full water column hafnium isotopic compositions of Atlantic seawater have been obtained at seven locations from the Labrador Sea to the Drake Passage. Despite subpicomolar concentrations in seawater, a precision of the Hf isotopic measurements of <0.7 epsilon-Hf units was achieved. An overall epsilon-Hf range between -3.1 in the Labrador Sea and +4.4 in Antarctic bottom water was determined, the distribution of which broadly reflects continental weathering inputs. Within particular water column profiles, significant differences of up to 4 epsilon-Hf units occur. Combined with Nd isotope data of the same samples, it is evident that the Hf isotopic composition of seawater is too radiogenic for a given Nd isotopic composition and that the largest difference between expected and measured Hf isotopic compositions in seawater occurs near the oldest continental crust in the Labrador Sea. This corroborates the previous proposition, which was mainly based on ferromanganese crust data, that the Hf isotopic composition of seawater is controlled by incongruent weathering of continental crust and possibly, to some extent, by hydrothermal contributions. Hafnium concentrations in the ocean do not increase along the deep ocean conveyer indicating an oceanic residence time of only a few hundred years, which is significantly shorter than previously assumed. The Hf isotopic composition of past seawater can therefore serve as a proxy for short distance, basin scale mixing processes and the regime and intensity of nearby continental weathering processes.
Resumo:
The South Pacific is a sensitive location for the variability of the global oceanic thermohaline circulation given that deep waters from the Atlantic Ocean, the Southern Ocean, and the Pacific Basin are exchanged. Here we reconstruct the deep water circulation of the central South Pacific for the last two glacial cycles (from 240,000 years ago to the Holocene) based on radiogenic neodymium (Nd) and lead (Pb) isotope records complemented by benthic stable carbon data obtained from two sediment cores located on the flanks of the East Pacific Rise. The records show small but consistent glacial/interglacial changes in all three isotopic systems with interglacial average values of -5.8 and 18.757 for epsilon Nd and 206Pb/204Pb, respectively, whereas glacial averages are -5.3 and 18.744. Comparison of this variability of Circumpolar Deep Water (CDW) to previously published records along the pathway of the global thermohaline circulation is consistent with reduced admixture of North Atlantic Deep Water to CDW during cold stages. The absolute values and amplitudes of the benthic delta13C variations are essentially indistinguishable from other records of the Southern Hemisphere and confirm that the low central South Pacific sedimentation rates did not result in a significant reduction of the amplitude of any of the measured proxies. In addition, the combined detrital Nd and strontium (87Sr/86Sr) isotope signatures imply that Australian and New Zealand dust has remained the principal contributor of lithogenic material to the central South Pacific.
Resumo:
Variations in the sediment input to the Namaqualand mudbelt during the Holocene are assessed using an integrative terrestrial to marine, source to sink approach. Geochemical and Sr and Nd isotopic signatures are used to distinguish fluvial sediment source areas. Relative to the sediments of the Olifants River, craton outcrops in the northern Orange River catchment have a more radiogenic Sr and a more unradiogenic Nd isotopic signature. Furthermore, upper Orange River sediments are rich in heavier elements such as Ti and Fe derived from the chemical weathering of Drakensberg flood basalt. Suspension load signatures change along the Orange River's westward transit as northern catchments contribute physical weathering products from the Fish and Molopo River catchment area. Marine cores offshore of the Olifants (GeoB8323-2) and Orange (GeoB8331-4) River mouths show pulses of increased contribution of Olifants River and upper Orange River input, respectively. These pulses coincide with intervals of increased terrestrial organic matter flux and increased paleo-production at the respective core sites. We attribute this to an increase in fluvial activity and vegetation cover in the adjacent catchments during more humid climate conditions. The contrast in the timing of these wet phases in the catchment areas reflects the bipolar behavior of the South African summer and winter rainfall zones. While rainfall in the Orange River catchment is related to southward shifts in the ICTZ, rainfall in the Olifants catchment is linked to northward shifts in Southern Hemisphere Westerly storm tracks. The later may also have increased southern Benguela upwelling in the past by reducing the shedding of Agulhas eddies into the Atlantic. The high-resolution records of latitudinal shifts in these atmospheric circulation systems correspond to late Holocene centennial-millennial scale climate variability evident in Antarctic ice core records. The mudbelt cores indicate that phases of high summer rainfall zone and low winter rainfall zone humidity (at ca. 2.8 and 1 ka BP) may be synchronous with Antarctic warming events. On the other hand, dry conditions in the summer rainfall zone along with wet conditions in the winter rainfall zone (at ca 3.3, 2 and 0.5 ka BP) may be associated with Antarctic cooling events.