707 resultados para 175-1


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper explores the paleoseismic record potentially preserved in the upper 40 m of hydraulic piston cores collected in 1996 at two sites in Saanich Inlet, British Columbia, during ocean drilling program (ODP) Leg 169S. The ODP cores are missing 1-2 m of water-rich sediment directly underlying the seafloor, but this sediment is preserved in shorter piston cores collected in 1989 and 1991. The upper part of the ODP cores consists of rhythmically laminated (varved) marine mud with intercalated massive beds, interpreted to be debris flow deposits. Some of the debris flow deposits are linked to past earthquakes, including the 1946 Vancouver Island earthquake (M7.2), a great (M8-9) plate-boundary earthquake at the Cascadia subduction zone in January 1700, and a large crustal or plate-boundary earthquake about 1000 yr ago. Earthquakes may also be responsible for debris flows in about AD 1600, 1500, 1250, 1150, 850, 450, 350, 180, and BC 200, 220, 500, 900, and 1050. If so, the average recurrence interval for moderate to large earthquakes, which trigger debris flows in Saanich Inlet, is about 150 yr. This recurrence interval is broadly consistent with the frequency of moderate to large earthquakes in the region during the historical period. Debris flows, however, can also be triggered by non-seismic processes, making it difficult to assemble a complete earthquake record from the Saanich Inlet cores. We propose that extensive debris flow deposits, emplaced by single large failures or many smaller coincident failures, probably have a seismic origin.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Primary Objectives - Describe and quantify the present strength and variability of the circulation and oceanic processes of the Nordic Seas regions using primarily observations of the long term spread of a tracer purposefully released into the Greenland Sea Gyre in 1996. - Improve our understanding of ocean processes critical to the thermaholine circulation in the Nordic Seas regions so as to be able to predict how this region may respond to climate change. - Assess the role of mixing and ageing of water masses on the carbon transport and the role of the thermohaline circulation in carbon storage using water transports and mixing coefficients derived from the tracer distribution. Specific Objectives Perform annual hydrographic, chemical and SF6 tracer surveys into the Nordic regions in order to: - Measure lateral and diapycnal mixing rates in the Greenland Sea Gyre and in the surrounding regions. - Document the depth and rates of convective mixing in the Greenland Sea using the SF6 and the water masses characteristics. - Measure the transit time and transport of water from the Greenland Sea to surrounding seas and outflows. Document processes of water mass transformation and entrainment occurring to water emanating from the central Greenland Sea. - Measure diapycnal mixing rates in the bottom and margins of the Greenland Sea basin using the SF6 signal observed there. Quantify the potential role of bottom boundary-layer mixing in the ventilation of the Greenland Sea Deep Water in absence of deep convection. Monitor the variability of the entrainment of water from the Greenland Sea using time series auto-sampler moorings at strategic positions i.e., sill of the Denmark Strait, Labrador Sea, Jan Mayen fracture zone and Fram Strait. Relate the observed variability of the tracer signal in the outflows to convection events in the Greenland Sea and local wind stress events. Obtain a better description of deepwater overflow and entrainment processes in the Denmark Strait and Faeroe Bank Channel overflows and use these to improve modelling of deepwater overflows. Monitor the tracer invasion into the North Atlantic using opportunistic SF6 measurements from other cruises: we anticipate that a number of oceanographic cruises will take place in the north-east Atlantic and the Labrador Sea. It should be possible to get samples from some cruises for SF6 measurements. Use process models to describe the spread of the tracer to achieve better parameterisation for three-dimensional models. One reason that these are so resistant to prediction is that our best ocean models are as yet some distance from being good enough, to predict climate and climate change.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The carbon-isotopic composition (d13C) of bulk carbonates, obtained from a transect of sites drilled through platform and periplatform sediments of Holocene to Early Miocene age, has been compared to ascertain whether changes in the d13C can be correlated between sediments of equivalent ages and whether such changes can be related to global changes in the d13C of the dissolved inorganic carbon in the oceans over this time period. Five of the sites were drilled during Leg 166 of the Ocean Drilling Project (1003-1007) in a transect ranging from five km to 25 km away from the platform margin and penetrating sediments of Holocene to Oligocene age that are contained in 17 depositional sequences (A-Q). Two shallow-water sites, Clino and Unda were situated on a extension of the same transect on Great Bahama Bank in a water depth of 10-15 m. With the exception of Unda and Clino, the d13C of the carbonates ranges from +5 per mil in the younger sequences to +1 per mil in the Early Miocene. In each of the sites, the d13C is strongly positively correlated with the percentage of aragonite. As a consequence, the d13C of sequences A through F is strongly correlated, reflecting the decreasing amount of aragonite with increasing depth. In the two platform sites, the d13C is significantly lower in the younger portions of the cores as a result of the influences of meteoric diagenesis during repeated exposure during the Pleistocene. Although the d13C of the individual sequences can be correlated in most instances between the ODP holes, the changes are not related to global changes in the d13C of the oceans which in contrast to the d13C of the platform sediments become isotopically lower towards the present day. Instead variations in the d13C appear to be related to varying mixtures of d13C-rich banktop sediments and pelagic material.