289 resultados para 10201106 TM-67


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In August-September 1991 during the SPASIBA expedition (Scientific Program on the Arctic and Siberian Aquatorium) aboard R/V Yakov Smirnitzky in the Laptev Sea ten samples of aerosols were collected by nylon nets. A combined approach including various analytical techniques, such as single-particle analysis, instrumental neutron activation analysis, and atomic absorption spectrophotometry, was used to study composition of the samples. Mass concentration of coarse-grained (>0.001 mm) insoluble fraction of aerosols ranged from 80 to 460 ng/m**3. In all the samples remains of land vegetation were found to be the dominant component. Organic carbon content of the aerosols ranged from 23 to 49%. Inorganic part of the samples was represented mainly by alumosilicates and quartz. Anthropogenic ''fly ash'' particles were observed in all the samples. Temporal variations of element concentrations resulted from differences in air masses entering the studied area.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular and isotope compositions of headspace and total (free + sorbed) hydrocarbon gases from drilled cores of the three ODP Leg 104 Sites 642, 643, and 644 of the Voring Plateau are used to characterize the origin and distribution of these gases in Holocene to Eocene sediments. Only minor amounts of methane were found in the headspace (0.1 to < 0.001 vol%). Although methane through propane are present in all of the total gas samples, different origins account for the concentration and composition variations found. Site 643 at the foot of the outer Voring Plateau represents a geological setting with poor hydrocarbon generating potential, (sediments with low TOC and maturity overlying oceanic basement). Correspondingly, the total gas concentrations are low, typical for background gases (yield C1 - 4 = 31 to 232 ppb, C1/C2+ = 0.6 to 4; delta13C(CH4) -22 per mil to -42 per mil) probably of a diagenetic origin. Holocene to Eocene sediments, which overlie volcanic units, were drilled on the outer Vdring Plateau, at Holes 642B and D. Similar to Site 643, these sediments possess a poor hydrocarbon generating potential. The total gas character (yield C1 - 4 = 20 to 410 ppb; C1/C2+ = 1.7 to 13.3; delta13C(CH4) ca. -23 per mil to -40 per mil) again indicates a diagenetic origin, perhaps with the addition of some biogenic gas. The higher geothermal gradient and the underlying volcanics do not appear to have any influence on the gas geochemistry. The free gas (Vacutainer TM) in the sediments at Site 644 are dominated by biogenic gas (C1/C2+ > 104; delta13C(CH4) -77 per mil). Indications, in the total gas, of hydrocarbons with a thermogenic signature (yield C1 - 4 = 121 to 769 ppb, C1/ C2+ = 3 to 8; delta13C(CH4) = -39 per mil to -71 per mil), could not be unequivocally confirmed as such. Alternatively, these gases may represent mixtures of diagenetic and biogenic gases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deformation features within the cores are studied with a view towards elucidating the structure of the Middle America Trench along the transect drilled during Leg 67. Where possible, inferences are made as to the physical environment of deformation. Extensional tectonics prevails in the area of the seaward slope and trench. Fracturing and one well-preserved normal fault are found mostly within the lower Miocene chalks, at the base of the sedimentary section. These chalks have high porosities (40%-60%) and water content (30%-190%, based on % dry wt.). Experimental triaxial compression tests conducted on both dry and water-saturated samples of chalk from Holes 495 and 499B show that only in the saturated samples is more brittle behavior observed. Brittle failure of the chalks is greatly facilitated by pore fluid pressures that lead to low effective pressures. Additional embrittlement (weakening) can take place as a result of the imposed extensional stress resulting from bending of a subducting elastic oceanic plate. The chalks exhibit, in a landward direction, an increase in density and mechanical strength and a decrease in water content. These changes are attributed to mechanical compaction that may have resulted from tectonic horizontal compression. The structure of the landward slope is not well understood because the slope sites had to be abandoned due to the presence of gas hydrate. The relationship of the chaotic, brittle deformation (observed in the cores from Hole 494A) at the base of the landward slope to tectonic processes remains unclear. The deformation observed on the slope sites (Holes 496 and 497) is mostly fracturing and near-vertical sigmoidal veinlets. These are interpreted as being the result of gas/fluid overpressurization due to the decomposition of the gas hydrate, and not due to tectonic loading of accreted sediments. Aside from four small displacement (less than 1cm) reverse faults observed in the lower Miocene chalks (which may be the product of soft-sediment deformation), there is a noticeable absence of structures reflecting a dominance of horizontal (tectonic) compression along the transect drilled. The absence of such features, the lack of continuity of sediment types across the trench-landward slope, and the normal stratigraphic sequence in Hole 494A do not support any known accretionary model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mineralogical identification, glass chemistry, and instrumental neutron activation analyses of Quaternary volcanic ash layers from Leg 67 Holes 496, 497, and 499 are used to correlate the drill holes and on-land sources. We have identified two units at Hole 496 that correspond to the 23,000-yr.-old Pinos Altos ash (Samples 496-3-4, 55-57 cm and 496-3-5, 74-76 cm); the 84,000-yr.-old Los Chocoyos ash corresponds with Sample 496-5-4, 134-146 cm, but this latter correlation is less certain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trace element and isotopic signatures of magmatic rock samples from ODP Hole 642E at the Vøring Plateau provide insight into the interaction processes of mantle melt with crust during the initial magma extrusion phases at the onset of the continental breakup. The intermediate (basaltic-andesitic) to felsic (dacitic and rhyolitic) Lower Series magmas at ODP Hole 642E appear to be produced by large amounts of melting of upper crustal material. This study not only makes use of the traditional geochemical tools to investigate crust-mantle interaction, but also explores the value of Cs geochemistry as an additional tool. The element Cs forms the largest lithophile cation, and shows the largest contrast in concentration between (depleted) mantle and continental crust. As such it is a very sensitive indicator of involvement of crustal material. The Cs data reinforce the conclusion drawn from isotopic signatures that the felsic magmas are largely anatectic crustal melts. The down-hole geochemical variation within ODP Hole 642E defines a decreasing continental crustal influence from the Lower Series into the Upper Series. This is essential information to distinguish intrinsic geochemical properties of the mantle melts from signatures imposed by crustal contamination. A comparison with data from the SE Greenland margin highlights the compositional asymmetry of the crust-mantle interactions at both sides of the paleo-Iapetus suture. While Lower Series and Middle Series rocks from the SE Greenland margin have isotopic signatures reflecting interactions with lower and middle crust, such signatures have not been observed at the mid-Norwegian margin. The geochemical data either point to a dissimilar Caledonian crustal composition and/or to different geodynamic pre-breakup rifting history at the two NE Atlantic margin segments.