733 resultados para ± 1 sigma


Relevância:

60.00% 60.00%

Publicador:

Resumo:

An 18 million year record of the Ca isotopic composition (d44/42Ca) of planktonic foraminiferans from ODP site 925, in the Atlantic, on the Ceara Rise, provides the opportunity for critical analysis of Ca isotope-based reconstructions of the Ca cycle. ?44/42Ca in this record averages +0.37+/-0.05 (1 sigma SD) and ranges from +0.21? to +0.52?. The record is a good match to previously published Neogene Ca isotope records based on foraminiferans, but is not similar to the record based on bulk carbonates, which has values that are as much as 0.25? lower. Bulk carbonate and planktonic foraminiferans from core tops differ slightly in their d44/42Ca (i.e., by 0.06+/-0.06? (n = 5)), while the difference between bulk carbonate and foraminiferan values further back in time is markedly larger, leaving open the question of the cause of the difference. Modeling the global Ca cycle from downcore variations in d44/42Ca by assuming fixed values for the isotopic composition of weathering inputs (d44/42Ca_w) and for isotope fractionation associated with the production of carbonate sediments (D_sed) results in unrealistically large variations in the total mass of Ca2+ in the oceans over the Neogene. Alternatively, variations of +/-0.05? in the Ca isotope composition of weathering inputs or in the extent of fractionation of Ca isotopes during calcareous sediment formation could entirely account for variations in the Ca isotopic composition of marine carbonates. Ca isotope fractionation during continental weathering, such as has been recently observed, could easily result in variations in d44/42Ca_w of a few tenths of permil. Likewise a difference in the fractionation factors associated with aragonite versus calcite formation could drive shifts in D_sed of tenths of permil with shifts in the relative output of calcite and aragonite from the ocean. Until better constraints on variations in d44/42Ca_w and D_sed have been established, modeling the Ca2+ content of seawater from Ca isotope curves should be approached cautiously.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The stable carbon isotope ratio of atmospheric CO2 (d13Catm) is a key parameter in deciphering past carbon cycle changes. Here we present d13Catm data for the past 24,000 years derived from three independent records from two Antarctic ice cores. We conclude that a pronounced 0.3 per mil decrease in d13Catm during the early deglaciation can be best explained by upwelling of old, carbon-enriched waters in the Southern Ocean. Later in the deglaciation, regrowth of the terrestrial biosphere, changes in sea surface temperature, and ocean circulation governed the d13Catm evolution. During the Last Glacial Maximum, d13Catm and atmospheric CO2 concentration were essentially constant, which suggests that the carbon cycle was in dynamic equilibrium and that the net transfer of carbon to the deep ocean had occurred before then.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To gain insights into the mechanisms of abrupt climate change within interglacials, we have examined the characteristics and spatial extent of a prominent, climatically induced vegetation setback during the Holsteinian interglacial (Marine Isotope Stage 11c). Based on analyses of pollen and varves of lake sediments from Dethlingen (northern Germany), this climatic oscillation, here termed the "Older Holsteinian Oscillation" (OHO), lasted 220 years. It can be subdivided into a 90-year-long decline of temperate tree taxa associated with an expansion of Pinus and herbs, and a 130-year-long recovery phase marked by the expansion of Betula and Alnus, and the subsequent recovery of temperate trees. The climate-induced nature of the OHO is corroborated by changes in diatom assemblages and ?18O measured on biogenic silica indicating an impact on the aquatic ecosystem of the Dethlingen paleolake. The OHO is widely documented in pollen records from Europe north of 50° latitude and is characterized by boreal climate conditions with cold winters from the British Isles to Poland, with a gradient of decreasing temperature and moisture availability, and increased continentality towards eastern Europe. This pattern points to a weakened influence of the westerlies and/or a stronger influence of the Siberian High. A comparison of the OHO with the 8.2 ka event of the Holocene reveals close similarities regarding the imprint on terrestrial ecosystems and the interglacial boundary conditions. Hence, in analogy to the 8.2 ka event, a transient, meltwater-induced slowdown of the North Atlantic Deep Water formation appears as a plausible trigger mechanism for the OHO. If correct, meltwater release into the North Atlantic may be a more common agent of abrupt climate change during interglacials than previously thought. We conclude that meltwater-induced climate setbacks during interglacials preferentially occurred when low rates of summer insolation increase during the preceding terminations facilitated the persistence of large-scale continental ice-sheets well into the interglacials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dust deposition in the Southern Ocean constitutes a critical modulator of past global climate variability, but how it has varied temporally and geographically is underdetermined. Here, we present data sets of glacial-interglacial dust-supply cycles from the largest Southern Ocean sector, the polar South Pacific, indicating three times higher dust deposition during glacial periods than during interglacials for the past million years. Although the most likely dust source for the South Pacific is Australia and New Zealand, the glacial-interglacial pattern and timing of lithogenic sediment deposition is similar to dust records from Antarctica and the South Atlantic dominated by Patagonian sources. These similarities imply large-scale common climate forcings such as latitudinal shifts of the southern westerlies and regionally enhanced glaciogenic dust mobilization in New Zealand and Patagonia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The glacial-to-Holocene evolution of subarctic Pacific surface water stratification and silicic acid (Si) dynamics is investigated based on new combined diatom oxygen (d18Odiat) and silicon (d30Sidiat) isotope records, along with new biogenic opal, subsurface foraminiferal d18O, alkenone-based sea surface temperature, sea ice, diatom, and core logging data from the NE Pacific. Our results suggest that d18Odiat values are primarily influenced by changes in freshwater discharge from the Cordilleran Ice Sheet (CIS), while corresponding d30Sidiat are primarily influenced by changes in Si supply to surface waters. Our data indicate enhanced glacial to mid Heinrich Stadial 1 (HS1) NE Pacific surface water stratification, generally limiting the Si supply to surface waters. However, we suggest that an increase in Si supply during early HS1, when surface waters were still stratified, is linked to increased North Pacific Intermediate Water formation. The coincidence between fresh surface waters during HS1 and enhanced ice-rafted debris sedimentation in the North Atlantic indicates a close link between CIS and Laurentide Ice Sheet dynamics and a dominant atmospheric control on CIS deglaciation. The Bølling/Allerød (B/A) is characterized by destratification in the subarctic Pacific and an increased supply of saline, Si-rich waters to surface waters. This change toward increased convection occurred prior to the Bølling warming and is likely triggered by a switch to sea ice-free conditions during late HS1. Our results furthermore indicate a decreased efficiency of the biological pump during late HS1 and the B/A (possibly also the Younger Dryas), suggesting that the subarctic Pacific has then been a source region of atmospheric CO2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report mineral chemistry, whole-rock major element compositions, and trace element analyses on Hole 735B samples drilled and selected during Leg 176. We discuss these data, together with Leg 176 shipboard data and Leg 118 sample data from the literature, in terms of primary igneous petrogenesis. Despite mineral compositional variation in a given sample, major constituent minerals in Hole 735B gabbroic rocks display good chemical equilibrium as shown by significant correlations among Mg# (= Mg/[Mg + Fe2+]) of olivine, clinopyroxene, and orthopyroxene and An (=Ca/[Ca + Na]) of plagioclase. This indicates that the mineral assemblages olivine + plagioclase in troctolite, plagioclase + clinopyroxene in gabbro, plagioclases + clinopyroxene + olivine in olivine gabbro, and plagioclase + clinopyroxene + olivine + orthopyroxene in gabbronorite, and so on, have all coprecipitated from their respective parental melts. Fe-Ti oxides (ilmenite and titanomagnetite), which are ubiquitous in most of these rocks, are not in chemical equilibrium with olivine, clinopyroxene, and plagioclase, but precipitated later at lower temperatures. Disseminated oxides in some samples may have precipitated from trapped Fe-Ti-rich melts. Oxides that concentrate along shear bands/zones may mark zones of melt coalescence/transport expelled from the cumulate sequence as a result of compaction or filter pressing. Bulk Hole 735B is of cumulate composition. The most primitive olivine, with Fo = 0.842, in Hole 735B suggests that the most primitive melt parental to Hole 735B lithologies must have Mg# 0.637, which is significantly less than Mg# = 0.714 of bulk Hole 735B. This suggests that a significant mass fraction of more evolved products is needed to balance the high Mg# of the bulk hole. Calculations show that 25%-45% of average Eastern Atlantis II Fracture Zone basalt is needed to combine with 55%-75% of bulk Hole 735B rocks to give a melt of Mg# 0.637, parental to the most primitive Hole 735B cumulate. On the other hand, the parental melt with Mg# 0.637 is far too evolved to be in equilibrium with residual mantle olivine of Fo > 0.89. Therefore, a significant mass fraction of more primitive cumulate (e.g., high Mg# dunite and troctolite) is yet to be sampled. This hidden cumulate could well be deep in the lower crust or simply in the mantle section. We favor the latter because of the thickened cold thermal boundary layer atop the mantle beneath slow-spreading ridges, where cooling and crystallization of ascending mantle melts is inevitable. These observations and data interpretation require reconsideration of the popular concept of primary mantle melts and relationships among the extent of mantle melting, melt production, and the composition and thickness of igneous crust.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Central American Volcanic Arc (CAVA) has been the subject of intensive research over the past few years, leading to a variety of distinct models for the origin of CAVA lavas with various source components. We present a new model for the NW Central American Volcanic Arc based on a comprehensive new geochemical data set (major and trace element and Sr-Nd-Pb-Hf-O isotope ratios) of mafic volcanic front (VF), behind the volcanic front (BVF) and back-arc (BA) lava and tephra samples from NW Nicaragua, Honduras, El Salvador and Guatemala. Additionally we present data on subducting Cocos Plate sediments (from DSDP Leg 67 Sites 495 and 499) and igneous oceanic crust (from DSDP Leg 67 Site 495), and Guatemalan (Chortis Block) granitic and metamorphic continental basement. We observe systematic variations in trace element and isotopic compositions both along and across the arc. The data require at least three different endmembers for the volcanism in NW Central America. (1) The NW Nicaragua VF lavas require an endmember with very high Ba/(La, Th) and U/Th, relatively radiogenic Sr, Nd and Hf but unradiogenic Pb and low d18O, reflecting a largely serpentinite-derived fluid/hydrous melt flux from the subducting slab into a depleted N-MORB type of mantle wedge. (2) The Guatemala VF and BVF mafic lavas require an enriched endmember with low Ba/(La, Th), U/Th, high d18O and radiogenic Sr and Pb but unradiogenic Nd and Hf isotope ratios. Correlations of Hf with both Nd and Pb isotopic compositions are not consistent with this endmember being subducted sediments. Granitic samples from the Chiquimula Plutonic Complex in Guatemala have the appropriate isotopic composition to serve as this endmember, but the large amounts of assimilation required to explain the isotope data are not consistent with the basaltic compositions of the volcanic rocks. In addition, mixing regressions on Nd vs. Hf and the Sr and O isotope plots do not go through the data. Therefore, we propose that this endmember could represent pyroxenites in the lithosphere (mantle and possibly lower crust), derived from parental magmas for the plutonic rocks. (3) The Honduras and Caribbean BA lavas define an isotopically depleted endmember (with unradiogenic Sr but radiogenic Nd, Hf and Pb isotope ratios), having OIB-like major and trace element compositions (e.g. low Ba/(La, Th) and U/Th, high La/Yb). This endmember is possibly derived from melting of young, recycled oceanic crust in the asthenosphere upwelling in the back-arc. Mixing between these three endmember types of magmas can explain the observed systematic geochemical variations along and across the NW Central American Arc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Slices of polycyclic metasediments (marbles and meta-cherts) are tectonically amalgamated with the polydeformed basement of the Dent Blanche tectonic system along a major Alpine shear zone in the Western Alps (Becca di Salé area, Valtournenche Valley). A combination of techniques (structural analysis at various scales, metamorphic petrology, geochronology and trace element geochemistry) was applied to determine the age and composition of accessory phases (titanite, allanite and zircon) and their relation to major minerals. The results are used to reconstruct the polyphase structural and metamorphic history, comprising both pre-Alpine and Alpine cycles. The pre-Alpine evolution is associated with low-pressure high-temperature metamorphism related to Permo-Triassic lithospheric thinning. In meta-cherts, microtextural relations indicate coeval growth of allanite and garnet during this stage, at ~ 300 Ma. Textures of zircon also indicate crystallization at HT conditions; ages scatter from 263-294 Ma, with a major cluster of data at ~ 276 Ma. In impure marble, U-Pb analyses of titanite domains (with variable Al and F contents) yield apparent 206Pb/238U dates range from Permian to Jurassic. Chemical and isotopic data suggest that titanite formed at Permian times and was then affected by (extension-related?) fluid circulation during the Triassic and Jurassic, which redistributed major elements (Al and F) and partially opened the U-Pb system. The Alpine cycle lead to early blueschist facies assemblages, which were partly overprinted under greenschist facies conditions. The strong Alpine compressional overprint disrupted the pre-Alpine structural imprint and/or reactivated earlier structures. The pre-Alpine metamorphic record, preserved in these slices of metasediments, reflects the onset of the Permo-Triassic lithospheric extension to Jurassic rifting.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The huge ice shelves in West Antarctica -the Ross and Filchner/Ronne Ice Shelves- habe probably extended out on th continental shelf during the late Wisconsin (Stuiver et al., 1981). Previous discussions, which have focused on the Ross Sea, have suggested (1) that the ice extended across the whole continental shelf (Denton et al., 1975; Kellog et al., 1979, doi:10.1130/0091-7613(1979)7<249:LQEOTW>2.0.CO;2) or (2) that there was only a minor ecpansion (Drewry, 1979). Here we present sedimentological data from the Weddel Sea which suggests that a late Wisconsin grounded ice sheet extended to the shelfe edge. The evidence includes a recent thicker ice in Ellsworth Mountains at the head of the Filchner/Ronne Ice Shelf (Rutford et al., 1980). This thickening would lead to an expansion of the inland ice sheet over the continental shelf, filling up the Weddell Sea embayment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Duolong porphyry Cu-Au deposit (5.4 Mt at 0.72% Cu, 41 t at 0.23 g/t Au), which is related to the granodiorite porphyry and the quartz-diorite porphyry from the Bangongco copper belt in central Tibet, formed in a continental arc setting. Here, we present the zircon U-Pb ages, geochemical whole-rock, Sr-Nd whole-rock and zircon in-situ Hf-O isotopic data for the Duolong porphyries. Secondary ion mass spectrometry (SIMS) zircon U-Pb analyses for six samples yielded consistent ages of ~118 Ma, indicating a Cretaceous formation age. The Duolong porphyries (SiO2 of 58.81-68.81 wt.%, K2O of 2.90-5.17 wt.%) belong to the high-K calc-alkaline series. They show light rare earth element (LREE)-enriched distribution patterns with (La/Yb)N = 6.1-11.7, enrichment in large ion lithophile elements (e.g., Cs, Rb, and Ba) and depletion of high field strength elements (e.g., Nb), with negative Ti anomalies. All zircons from the Duolong porphyries share relatively similar Hf-O isotopic compositions (d18O=5.88-7.27 per mil; eHf(t)=3.6-7.3), indicating that they crystallized from a series of cogenetic melts with various degrees of fractional crystallization. This, along with the general absence of older inherited zircons, rules out significant crustal contamination during zircon growth. The zircons are mostly enriched in d18O relative to mantle values, indicating the involvement of an 18O-enriched crustal source in the generation of the Duolong porphyries. Together with the presence of syn-mineralization basaltic andesite, the mixing between silicic melts derived from the lower crust and evolved H2O-rich mafic melts derived from the metsomatizied mantle wedge, followed by subsequent fractional crystallization (FC) and minor crustal contamination in the shallow crust, could well explain the petrogenesis of the Duolong porphyries. Significantly, the hybrid melts possibly inherited the arc magma characteristics of abundant F, Cl, Cu, and Au elements and high oxidation state, which contributed to the formation of the Duolong porphyry Cu-Au deposit.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The long-term rate of racemization for amino acids preserved in planktonic foraminifera was determined by using independently dated sediment cores from the Arctic Ocean. The racemization rates for aspartic acid (Asp) and glutamic acid (Glu) in the common taxon, Neogloboquadrina pachyderma, were calibrated for the last 150 ka using 14C ages and the emerging Quaternary chronostratigraphy of Arctic Ocean sediments. An analysis of errors indicates realistic age uncertainties of about ±12% for Asp and ±17% for Glu. Fifty individual tests are sufficient to analyze multiple subsamples, identify outliers, and derive robust sample mean values. The new age equation can be applied to verify and refine age models for sediment cores elsewhere in the Arctic Ocean, a critical region for understanding the dynamics of global climate change.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thick oceanic crust of the Caribbean plate appears to be the tectonized remnant of an eastern Pacific oceanic plateau that has been inserted between North and South America. The emplacement of the plateau into its present position has resulted in the obduction and exposure of its margins, providing an opportunity to study the age relations, internal structure and compositional features of the plateau. We present the results of 40Ar-39Ar radiometric dating, major-, trace-element, and isotopic compositions of basalts from some of the exposed sections as well as drill core basalt samples from Leg 15 of the Deep Sea Drilling Project. Five widely spaced, margin sections yielded ages ranging from 91 to 88 Ma. Less well-constrained radiometric ages from the drill cores, combined with the biostratigraphic age of surrounding sediments indicate a minimum crystallization age of ~90 Ma in the Venezuelan Basin. The synchroneity of ages across the region is consistent with a flood basalt origin for the bulk of the Caribbean plateau i.e., large volume, rapidly erupted, regionally extensive volcanism.. The ages and compositions are also consistent with plate reconstructions that place the Caribbean plateau in the vicinity of the Galápagos hotspot at its inception. The trace-element and isotopic compositions of the ~90 Ma rocks indicate a depleted mantle and an enriched, plume-like mantle were involved in melting to varying degrees across the plateau. Within the same region, a volumetrically secondary, but widespread magmatic event occurred at 76 Ma, as is evident in Curacao, western Colombia, Haiti, and at DSDP Site 152/ODP Site 1001 near the Hess Escarpment. Limited trace-element data indicate that this phase of magmatism was generally more depleted than the first. We speculate that magmatism may have resulted from upwelling of mantle, still hot from the 90 Ma event, during lithospheric extension attending gravitational collapse of the plateau, andror tectonic emplacement of the plateau between North and South America. Still younger volcanics are found in the Dominican Republic (69 Ma) and the Quepos Peninsula of Costa Rica (63 Ma). The latter occurrence conceivably formed over the Galápagos hotspot and subsequently accreted to the western edge of the plateau during subduction of the Farallon plate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A 6200 year old peat sequence, cored in a volcanic crater on the sub-Antarctic Ile de la Possession (Iles Crozet), has been investigated, based on a multi-proxy approach. The methods applied are macrobotanical (mosses, seeds and fruits) and diatom analyses, complemented by geochemical (Rock-Eval6) and rock magnetic measurements. The chronology of the core is based on 5 radiocarbon dates. When combining all the proxy data the following changes could be inferred. From the onset of the peat formation (6200 cal yr BP) until ca. 5550 cal yr BP, biological production was high and climatic conditions must have been relatively warm. At ca. 5550 cal yr BP a shift to low biological production occurred, lasting until ca. 4600 cal yr BP. During this period the organic matter is well preserved, pointing to a cold and/or wet environment. At ca. 4600 cal yr BP, biological production increased again. From ca. 4600 cal yr BP until ca. 4100 cal yr BP a 'hollow and hummock' micro topography developed at the peat surface, resulting in the presence of a mixture of wetter and drier species in the macrobotanical record. After ca. 4100 cal yr BP, the wet species disappear and a generally drier, acidic bog came into existence. A major shift in all the proxy data is observed at ca. 2800 cal yr BP, pointing to wetter and especially windier climatic conditions on the island probably caused by an intensification and/or latitudinal shift of the southern westerly belt. Caused by a stronger wind regime, erosion of the peat surface occurred at that time and a lake was formed in the peat deposits of the crater, which is still present today.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ice-rafting evidence for a '1500-year cycle' sparked considerable debate on millennial-scale climate change and the role of solar variability. Here, we reinterpret the last 70,000 years of the subpolar North Atlantic record, focusing on classic DSDP Site 609, in the context of newly available raw data, the latest radiocarbon calibration (Marine09) and ice core chronology (GICC05), and a wider range of statistical methodologies. A ~1500-year oscillation is primarily limited to the short glacial Stage 4, the age of which is derived solely from an ice flow model (ss09sea), subject to uncertainty, and offset most from the original chronology. Results from the most well-dated, younger interval suggest that the original 1500 ± 500 year cycle may actually be an admixture of the ~1000 and ~2000 cycles that are observed within the Holocene at multiple locations. In Holocene sections these variations are coherent with 14C and 10Be estimates of solar variability. Our new results suggest that the '1500-year cycle' may be a transient phenomenon whose origin could be due, for example, to ice sheet boundary conditions for the interval in which it is observed. We therefore question whether it is necessary to invoke such exotic explanations as heterodyne frequencies or combination tones to explain a phenomenon of such fleeting occurrence that is potentially an artifact of arithmetic averaging.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Quantifying the spatial and temporal sea surface temperature (SST) and salinity changes of the Indo-Pacific Warm Pool is essential to understand the role of this region in connection with abrupt climate changes particularly during the last deglaciation. In this study we reconstruct SST and seawater d18O of the tropical eastern Indian Ocean for the past 40,000 years from two sediment cores (GeoB 10029-4, 1°30'S, 100°08'E, and GeoB 10038-4, 5°56'S, 103°15'E) retrieved offshore Sumatra. Our results show that annual mean SSTs increased about 2-3 °C at 19,000 years ago and exhibited southern hemisphere-like timing and pattern during the last deglaciation. Our SST records together with other Mg/Ca-based SST reconstructions around Indonesia do not track the monsoon variation since the last glacial period, as recorded by terrestrial monsoon archives. However, the spatial SST heterogeneity might be a result of changing monsoon intensity that shifts either the annual mean SSTs or the seasonality of G. ruber towards the warmer or the cooler season at different locations. Seawater d18O reconstructions north of the equator suggest fresher surface conditions during the last glacial and track the northern high-latitude climate change during the last deglaciation. In contrast, seawater ?18O records south of the equator do not show a significant difference between the last glacial period and the Holocene, and lack Bølling-Allerød and Younger Dryas periods suggestive of additional controls on annual mean surface hydrology in this part of the Indo-Pacific Warm Pool.