943 resultados para Antarctic Marion Island
Resumo:
Although long-range atmospheric transport has been described as the predominant mechanism for exposing polar regions to persistent organic pollutants (POPs), recent studies have suggested that bird activity can also contribute substantially to contaminant levels in some environments. However, because the species so far reported have all been migratory, it has not been demonstrated conclusively whether locally elevated contamination represents transport from lower latitudes by the migrating birds or, alternatively, redistribution and concentration of contaminants that were already present in the high-latitude environments. The present study demonstrates, for the first time, that several POPs are present in elevated concentrations in an environment frequented by a non-migratory species (Adelie penguins) that spends its entire life in the Antarctic. Levels of POPs, such as p,p'-DDE, hexachlorobenzene (HCB), chlordanes (CHLs) and polychlorinated biphenyls (PCBs), were 10 to 100-fold higher in soil samples from penguin colonies than from reference areas. This significant difference is likely related to local penguin activity, such as a higher abundance of guano and the presence of bird carcasses. This hypothesis is also supported by a higher percentage of persistent congeners (PCB 99, 118, 138 and 153) in the soil from the colonies compared to the reference areas. This profile of PCB congeners closely matched profiles seen in penguin eggs or penguin blood.
Resumo:
In coastal waters, Antarctic rhodophytes are exposed to harsh environmental conditions throughout the year, like low water temperatures ranging from -1.8°C to 2°C and high light during the summer season. Photosynthetic performance under these conditions may be affected by slowed down enzymatic reactions and the increased generation of reactive oxygen species. The consequence might be a chronic photoinhibition of photosynthetic primary reactions related to increased fragmentation of the D1 reaction centre protein in photosystem II. It is hypothesized that changes in lipid composition of biomembranes may represent an adaptive trait to maintain D1 turnover in response to temperature variation. The interactive effects of high light and low temperature were studied on an endemic Antarctic red alga, Palmaria decipiens, sampled from two shore levels, intertidal and subtidal, and exposed to mesocosm experiments using two levels of natural solar radiation and two different temperature regimes (2-5°C and 5-10°C). During the experimental period of 23 days, maximum quantum yield of photosynthesis decreased in all treatments, with the intertidal specimens exposed at 5-10°C being most affected. On the pigment level, a decreasing ratio of phycobiliproteins to chlorophyll a was found in all treatments. A pronounced decrease in D1 protein concentration occurred in subtidal specimens exposed at 2-5°C. Marked changes in lipid composition, i.e. the ratio of saturated to unsaturated fatty acids, indicated an effective response of specimens to temperature change. Results provide new insights into mechanisms of stress adaptation in this key species of shallow Antarctic benthic communities.
Resumo:
Extract from related chapter 5.5.2 in reference: The Orca Seamount was discovered in the central basin of the Bransfield Strait around the posit 62°26'S and 58°24'W on the west side of the Antarctic Peninsula, the most western area of the south polar continent. Through the discovery was made known in 1987, it was only during three bathymetric surveys with high resolution fan echosounders between 1993 and 1995 that the character and complete shape of a remarkable volcano seamount became evident. The data acquisition and processing revealed a spectacular crater of 350 m depth. The relative hight of this 3 km wide "caldera" rim is 550 m with a basal diameter of the seamount cone of 11 km. Its flanks are about 15° steep but in some places the slope reaches up to 36°. The nearly circular shape of the Orca edifice spreads outh with several pronounced spurs, trending parallel to the basin axis in a northeast-southwest direction. The Bransfield Strait is a trough-shaped basin of 400 km length and 2 km depth between the South Shetland Island Arc and the Antarctic Peninsula, formed by rifting behind the islands. The separation of the South Shetland island chain from the peninsula began possibly several million years ago. The active rifting is still going on however, and has caused recent earthquakes and volcanism along the Bransfield Strait. The Strait hosts a chain of submerged seamounts of volcanic origin with the presently inactive Ora Seamount as the most spectacular one. The South Shelfand Island owe their existence to a subduction related volcanism which is perhaps 5-10 times older than the age of Orca and the other seamounts along the central basin of the Bransfield Strait.
Resumo:
Most current methods of reconstructing past sea levels within Antarctica rely on radiocarbon dating. However, radiocarbon dating is limited by the availability of material for dating and problems inherent with radiocarbon reservoirs in Antarctic marine systems. Here we report on the success of a new approach to dating raised beach deposits in Antarctica for the purpose of reconstructing past sea levels. This new approach is the use of optically stimulated luminescence (OSL) on quartz-grains obtained from the underside of cobbles within raised beaches and boulder pavements. We obtained eight OSL dates from three sites along the shores of Maxwell Bay in the South Shetland Islands of the Antarctic Peninsula. These dates are internally consistent and fit well with previously published radiocarbon ages obtained from the same deposits. In addition, when the technique was applied to a modern beach, it resulted in an age of zero. Our results suggest that this method will provide a valuable tool in the reconstruction of past sea levels in Antarctica and other coarse-grained beach deposits across the globe.
Resumo:
The timing of the most recent Neoglacial advance in the Antarctic Peninsula is important for establishing global climate teleconnections and providing important post-glacial rebound corrections to gravity-based satellite measurements of ice loss. However, obtaining accurate ages from terrestrial geomorphic and sedimentary indicators of the most recent Neoglacial advance in Antarctica has been hampered by the lack of historical records and the difficulty of dating materials in Antarctica. Here we use a new approach to dating flights of raised beaches in the South Shetland Islands of the northern Antarctic Peninsula to bracket the age of a Neoglacial advance that occurred between 1500 and 1700 AD, broadly synchronous with compilations for the timing of the Little Ice Age in the northern hemisphere. Our approach is based on optically stimulated luminescence of the underside of buried cobbles to obtain the age of beaches previously shown to have been deposited immediately inside and outside the moraines of the most recent Neoglacial advance. In addition, these beaches mark the timing of an apparent change in the rate of isostatic rebound thought to be in response to the same glacial advance within the South Shetland Islands. We use a Maxwell viscoelastic model of glacial-isostatic adjustment (GIA) to determine whether the rates of uplift calculated from the raised beaches are realistic given the limited constraints on the ice advance during this most recent Neoglacial advance. Our rebound model suggests that the subsequent melting of an additional 16-22% increase in the volume of ice within the South Shetland Islands would result in a subsequent uplift rate of 12.5 mm/yr that lasted until 1840 AD resulting in a cumulative uplift of 2.5 m. This uplift rate and magnitude are in close agreement with observed rates and magnitudes calculated from the raised beaches since the most recent Neoglacial advance along the South Shetland Islands and falls within the range of uplift rates from similar settings such as Alaska.
Resumo:
In the context of the KErguelen Ocean and Plateau compared Study (KEOPS, 19 January-13 February 2005), particle dynamics were investigated using thorium isotope measurements over and off the Kerguelen plateau. Dissolved and particulate 230Th and 232Th samples were collected at nine stations. Dissolved excess 230Th concentrations (230Thxs) vary from 0.5 to 20.8 fg/kg and particulate 230Thxs concentrations from 0.1 to 10.0 fg/kg. Dissolved and particulate 232Th concentration ranges are 16.8-450.2 pg/kg and 3.8-502.8 pg/kg, respectively. The 230Thxs concentrations increase linearly with depth down to the bottom at most of the plateau stations and down to 1000 m at the off-plateau stations. This linear trend is observed down to the bottom (1550 m) at Kerfix, the open-ocean "upstream" station located west of the Kerguelen plateau. A simple reversible scavenging model applied to these data allowed the estimation of adsorption rate constant (k1~=0.2-0.8 per year), desorption rate constant (k-1~=1-8 per year) and partition coefficients (average K=0.16±0.07). Calculated particle settling velocities S deduced from this simple model are ca. 500 m/year at most of the plateau stations and 800 m/year at all the off-plateau stations. The plateau settling velocities are relatively low for such a productive site, compared to the surrounding HNLC areas. The difference might reflect the fact that lateral advection is neglected in this model. Taking this advection into account allows the reconstruction of the observed 230Thxs linear distributions, but only if faster settling velocities are considered. This implies that the 1D model strongly underestimates the settling velocity of the particles. In the deep layers, the occurrence of intense boundary scavenging along the escarpment due to bottom sediment re-suspension and interaction with a nepheloid layer, yielding a removal of ?50% of the Th stock along the northwestward transect, is suggested.
Resumo:
By the nuclear bomb tests during the 1950s and early 1960s, the radiocarbon content of the atmospheric CO, on the Southern Hemisphere rose within a few years from 98 to 162% of the standard recent value and then dropped to 122% (at the end of 1984). This rapid fluctuation was used to determine the lifetime of five species of lichens collected in the beginning of 1985 in the maritime Antarctic. Under the assumption that Lichens assimilate each year carbon at the same rate and that carbon once fixed at least in main branches never will be exchanged later on. The age of mature thalli of Caioplaco regalis, Ramalino tetebrata and Ustiea antarctica was determined to 32 years, while U, aurantiaco-atra and Himantormia lugubris gave an age of ca. 38 years and ca. 60 years, respectively.
Resumo:
Both the olivine-hearing tholeiite basalts of the island and the brown soils which have developed on the basalts contain 2-20% of a swelling clay mineral. It emerges from chemical, optical, X-ray diffraction and differential thermal analytical studies that this clay mineral is a Mg-rich, Fe2+ and AI-bearing tri-octahedral smectite, e. g. Mg-saponite. Due to petrographic and crystal chemical properties the saponite should have been formed by hydrothermal alteration of the primary Mg-Fe-minerals olivine and clinopyroxene. The soils consist of plagioclase, saponite and goethite which has been formed by chemical weathering within the soils. In the uppermost layer some of the soils contain humic substances and phosphatic material, the latter may be related to the recent production of guano.