900 resultados para Calculated from conductivity
Resumo:
Past changes in North Pacific sea surface temperatures and sea-ice conditions are proposed to play a crucial role in deglacial climate development and ocean circulation but are less well known than from the North Atlantic. Here, we present new alkenone-based sea surface temperature records from the subarctic northwest Pacific and its marginal seas (Bering Sea and Sea of Okhotsk) for the time interval of the last 15 kyr, indicating millennial-scale sea surface temperature fluctuations similar to short-term deglacial climate oscillations known from Greenland ice-core records. Past changes in sea-ice distribution are derived from relative percentage of specific diatom groups and qualitative assessment of the IP25 biomarker related to sea-ice diatoms. The deglacial variability in sea-ice extent matches the sea surface temperature fluctuations. These fluctuations suggest a linkage to deglacial variations in Atlantic meridional overturning circulation and a close atmospheric coupling between the North Pacific and North Atlantic. During the Holocene the subarctic North Pacific is marked by complex sea surface temperature trends, which do not support the hypothesis of a Holocene seesaw in temperature development between the North Atlantic and the North Pacific.
Resumo:
Cape Roberts drillhole CRP-3 in the northern part of McMurdo Sound (Ross Sea, Antarctica) targeted the western margin of the Victoria Land basin to investigate Neogene to Palaeogene climatic and tectonic history by obtaining continuous core and downhole logs (Cape Roberts Science Team, 2000). The CRP-3 drillhole extended to 939.42 mbsf (meters below seafloor) at a water depth of 297 m. The first downhole measurements after drilling were the temperature and salinity logs. Both were measured at the beginning and at the end of each of the three logging phases. Although an equilibrium temperature state may not have been fully reached after drilling, the temperature and salinity profiles seem to be scarcely disturbed. The average overall temperature gradient calculated from all temperature measurements is 28.5 K/km; remarkably lower than the temperature gradients found in other boreholes in the western Ross See and the Transantarctic Mountains. Anomalies in the salinity profiles at the beginning of each logging phase were no longer present at the end of the corresponding logging phase. This pattern indicates that drilling mud invaded the formation during drilling operations and flowed back into the borehole after drilling ceased. Thus, zones of temperature and salinity anomalies identify permeable zones in the formation and may be pathways for fluid flow. Radiogenic heat production, calculated from the radionuclide contents, is relatively low, with average values between 0.5 and 1.0 pW/m3. The highest values (up to 2 µW/m3) were obtained for the lower part of the Beacon Sandstone below 855 mbsf. The heat flow component due to radiogenic heat production integrated over the entire borehole is 0.7 mW/m2. Thermal conductivities range from 1.3 to 3 W/mK with an average value of 2.1 W/mK over the Tertiary section. Together with the average temperature gradient of 28.5 K/km this yields an average heat flow value of 60 mW/m2.
Resumo:
The paper focuses on studies of snow-pit samples and shallow firn cores taken during the 1995-96 and 1996-97 field seasons at Amundsenisen, Dronning Maud Land, Antarctica. The dating of the firn is based on the artificial tritium distribution in the snow cover and on several reference horizons identified by electrical measurements. The early 1964 through 1965 horizon is marked by the deposition of sulfate released to the atmosphere during the eruption of the Agung volcano in March 1963; this horizon was detected by dielectric profiling and electrical conductivity measurements; the proof by chemical analysis has still to be seen. At the ten investigated sites on Amundsenisen the 1964-65 horizon was identified 4.1-5.7 m below the surface. The accumulation rates on Amundsenisen are 41-91 kg/m**2/a. The cores are up to 100 years old. A relationship between isotope content and the mean air temperature on a regional scale can be based on measurements of firn temperature at 10 m depth at the drilling sites. Between Neumayer station at the coast and Heimefrontfjella, the temperature gradient of the deuterium content is 9.6 per mil/K. South of Heimefrontfjella, on the Amundsenisen plateau, it is only 5.5 per mil/K. Time series of yearly accumulation rates show no significant trend. For the isotope records a significant trend to higher values with gradients of 0.1-0.2 d2H per mil/a can be seen in five of the ten time series.
Resumo:
The European Project for Ice Coring in Antarctica (EPICA) includes a comprehensive pre-site survey on the inland ice plateau of Dronning Maud Land. This paper focuses on the investigation of the 18O content of shallow firn and ice cores. These cores were dated by profiles derived from dielectric-profiling and continuous flow analysis measurements. The individual records were stacked in order to obtain composite chronologies of 18O contents and accumulation rates with enhanced signal-to-noise variance ratios.These chronologies document variations in the last 200 and 1000 years.The 18O contents and accumulation rates decreased in the 19th century and increased during the 20th century.Using the empirical relationships between stable isotopes, accumulation rates and the 10m firn temperature, the variation of both parameters can be explained by the same temperature history.But other causes for these variations, such as the build-up of the snow cover, cannot be excluded. A marked feature of the 1000 year chronology occurs during the period AD 1180-1530 when the 18O contents remains below the long-term mean. Cross-correlation analyses between five cores from the Weddell Sea region and Dronning Maud Land show that 18O records can in some periods be positively correlated and in others negatively correlated, indicating a complex climatic history in time and space.
Resumo:
Between 1999 and 2001, a 724 m long ice core was drilled on Akademii Nauk, the largest glacier on Severnaya Zemlya, Russian Arctic. The drilling site is located near the summit. The core is characterized by high melt-layer content. The melt layers are caused by melting and even by rain during the summer. We present high-resolution data of density, electrical conductivity (dielectrical profiling), stable water isotopes and melt-layer content for the upper 136 m (120 m w.e.) of the ice core. The dating by isotopic cycles and electrical conductivity peak identification suggests that this core section covers approximately the past 275 years. Singularities of volcanogenic and anthropogenic origin provide well-defined additional time markers. Long-term temperatures inferred from 12 year running mean averages of d18O reach their lowest level in the entire record around 1790. Thereafter the d18O values indicate a continuously increasing mean temperature on the Akademii Nauk ice cap until 1935, interrupted only by minor cooling episodes. The 20th century is found to be the warmest period in this record.
Resumo:
Bottom pressure, tilt and seawater physical-properties were monitored for a year using two instruments within the immerged Santorini caldera (Greece). Piggy-backed on the CALDERA2012 cruise, this geodetic experiment was designed to monitor evolution of the 2011-2012 Santorini unrest. Conducted during a quiescent period, it allowed us to study oceanographic and atmospheric signal in our data series. We observe periodic oceanographic signals associated with tides, and seiches that are likely linked to both the caldera and Cretan basin geometries. In winter, the caldera witnesses sudden cooling events that tilt an instrument towards the Southeast, indicating cold-water influx likely originating from the north-western passage between Thirasia and Oia. We do not obtain evidence of long-term vertical seafloor deformation from the pressure signal, although it may be masked by instrumental drift. However, tilt data suggests a local seafloor tilt event ~1 year after the end of the unrest period which could be consistent with inflation under or near Nea Kameni. Seafloor geodetic data recorded at the bottom of the Santorini caldera illustrates that the oceanographic signature is an important part of the signal, which needs to be considered for monitoring volcanic or geological seafloor deformation in shallow-water and/or nearshore areas.
Resumo:
We report the northernmost and deepest known occurrence of deep-water pycnodontine oysters, based on two surveys along the French Atlantic continental margin to the La Chapelle continental slope (2006) and the Guilvinec Canyon (2008). The combined use of multibeam bathymetry, seismic profiling, CTD casts and a remotely operated vehicle (ROV) made it possible to describe the physical habitat and to assess the oceanographic control for the recently described species Neopycnodonte zibrowii. These oysters have been observed in vivo in depths from 540 to 846 m, colonizing overhanging banks or escarpments protruding from steep canyon flanks. Especially in the Bay of Biscay, such physical habitats may only be observed within canyons, where they are created by both long-term turbiditic and contouritic processes. Frequent observations of sand ripples on the seabed indicate the presence of a steady, but enhanced bottom current of about 40 cm/s. The occurrence of oysters also coincides with the interface between the Eastern North Atlantic Water and the Mediterranean Outflow Water. A combination of this water mass mixing, internal tide generation and a strong primary surface productivity may generate an enhanced nutrient flux, which is funnelled through the canyon. When the ideal environmental conditions are met, up to 100 individuals per m² may be observed. These deep-water oysters require a vertical habitat, which is often incompatible with the requirements of other sessile organisms, and are only sparsely distributed along the continental margins. The discovery of these giant oyster banks illustrates the rich biodiversity of deep-sea canyons and their underestimation as true ecosystem hotspots.
Resumo:
Ice shelves strongly impact coastal Antarctic sea-ice and the associated ecosystem through the formation of a sub-sea-ice platelet layer. Although progress has been made in determining and understanding its spatio-temporal variability based on point measurements, an investigation of this phenomenon on a larger scale remains a challenge due to logistical constraints and a lack of suitable methodology. In this study, we applied a laterally-constrained Marquardt-Levenberg inversion to a unique multi-frequency electromagnetic (EM) induction sounding dataset obtained on the landfast sea ice of Atka Bay, eastern Weddell Sea, in 2012. In addition to consistent fast-ice thickness and -conductivities along > 100 km transects; we present the first comprehensive, high resolution platelet-layer thickness and -conductivity dataset recorded on Antarctic sea ice. The reliability of the algorithm was confirmed by using synthetic data, and the inverted platelet-layer thicknesses agreed within the data uncertainty to drill-hole measurements. Ice-volume fractions were calculated from platelet-layer conductivities, revealing that an older and thicker platelet layer is denser and more compacted than a loosely attached, young platelet layer. The overall platelet-layer volume below Atka Bay fast ice suggests that the contribution of ocean/ice-shelf interaction to sea-ice volume in this region is even higher than previously thought. This study also implies that multi-frequency EM induction sounding is an effective approach in determining platelet layer volume on a larger scale than previously feasible. When applied to airborne multi-frequency EM, this method could provide a step towards an Antarctic-wide quantification of ocean/ice-shelf interaction.
Resumo:
The ice cap on Berkner Island is grounded on bedrock within the Filchner-Ronne Ice Shelf and is, therefore, expected to be a well-suited place to retrieve long-term ice-core records reflecting the environmental situation of the Weddell Sea region. Shallow firn cores were drilled to 11 m at the two main summits of Berkner Island and analysed in high depth resolution for electrical d.c. conductivity (ECM), stable isotopes, chloride, sulphate, nitrate and methane-sulphonate (MSA). From the annual layering of dD and non-sea-salt (nss) sulphate, a mean annual snow accumulation of 26.6 cm water at the north dome and 17.4 cm water at the south dome are obtained. As a result of ineffective wind scouring indicated by a relatively low near-surface snow density, regular annual cycles are found for all species at least in the upper 4-5 m. Post depositional changes are responsible for a substantial decrease of the seasonal dD and nitrate amplitude as well as for considerable migration of the MSA signal operating below a depth of 3-4 m. The mean chemical and isotopic firn properties at the south dome correspond to the situation on the Filchner-Ronne Ice shelf at a comparable distance to the coast, whereas the north dome is found to be more influenced by maritime air masses. Persistent high sea-salt levels in winter snow at Berkner Island heavily obscure the determination of nss sulphate probably due to sulphate fractionation in the Antartic sea-salt aerosols. Estimated time-scales predict ages at 400 m depth to be ca. 2000 years for the north and ca. 3000 years for the south dome. Pleistocene ice is expected in the bottom 200 and 300 m, respectively.
Resumo:
The accumulation and distribution of the 2H content of near-surface layers in the eastern part of the Ronne Ice Shelf were determined from 16 firn cores drilled to about 10 m depth during the Filchner IIIa and IV campaigns in 1990 and 1992, respectively. The cores were dated stratigraphically by seasonal d2H variations in the firn. In addition, 3H and high-resolution chemical profiles were used to assist in dating. Both the accumulation rate and the stable-isotope content decrease with increasing distance from the ice edge: the d2H values range from about -195 per mil at the ice edge to -250 per mil at BAS sites 5 and 6, south of Henry Ice Rise, and the accumulation rates from about 210 to 90 kg/m**2/a. The d2H values of the near-surface firn and the 10 m firn temperatures (Theta) at individual sites are very well correlated: ddelta2H/dTheta=(10.3±0.6)per mil /K; r = 0.97. The d2H profiles of the two ice cores B13 and B15 drilled in 1990 and 1992 to 215 and 320 m depth, respectively, reflect the gradual depletion in 2H in the firn upstream of the drill sites. Comparison with tlie surface data indicates that the ice above 142 m in core B15 and above 137 m in core B13 was deposited on the ice shelf, whereas the deeper ice, down to 152.8 m depth, most probably originated from the margin of the Antarctic ice sheet.