920 resultados para Accumulation rate, manganese


Relevância:

90.00% 90.00%

Publicador:

Resumo:

There is increasing evidence indicating that syndepositional redistribution of sediment on the seafloor by bottom currents is common and can significantly affect sediment mass accumulation rates. Notwithstanding its common incidence, this process (generally referred to as sediment focusing) is often difficult to recognize. If redistribution is near synchronous to deposition, the stratigraphy of the sediment is not disturbed and sediment focusing can easily be overlooked. Ignoring it, however, can lead to serious misinterpretations of sedimentary fluxes, particularly when past changes in export flux from the overlying water are inferred. In many instances, this problem can be resolved, at least for sediments deposited during the late Quaternary, by normalizing to the flux of 230Th scavenged from seawater, which is nearly constant and equivalent to the known rate of production of 230Th from the decay of dissolved 234U. We review the principle, advantages and limitations of this method. Notwithstanding its limitations, it is clear that 230Th normalization does provide a means of achieving more accurate interpretations of sedimentary fluxes and eliminates the risk of serious misinterpretations of sediment mass accumulation rates.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Millennial-scale climate changes during the last glacial period and deglaciation were accompanied by rapid changes in atmospheric CO2 that remain unexplained. While the role of the Southern Ocean as a 'control valve' on ocean-atmosphere CO2 exchange has been emphasized, the exact nature of this role, in particular the relative contributions of physical (for example, ocean dynamics and air-sea gas exchange) versus biological processes (for example, export productivity), remains poorly constrained. Here we combine reconstructions of bottom-water [O2], export production and 14C ventilation ages in the sub-Antarctic Atlantic, and show that atmospheric CO2 pulses during the last glacial- and deglacial periods were consistently accompanied by decreases in the biological export of carbon and increases in deep-ocean ventilation via southern-sourced water masses. These findings demonstrate how the Southern Ocean's 'organic carbon pump' has exerted a tight control on atmospheric CO2, and thus global climate, specifically via a synergy of both physical and biological processes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Four firn cores were retrieved in 2007 at two ridges in the area of the Ekström Ice Shelf, Dronning Maud Land, coastal East Antarctica, in order to investigate the recent regional climate variability and the potential for future extraction of an intermediate-depth core. Stable water-isotope analysis, tritium content and electrical conductivity were used to date the cores. For the period 1981-2006 a strong and significant correlation between the stable-isotope composition of firn cores in the hinterland and mean monthly air temperatures at Neumayer station was (r=0.54-0.71). No atmospheric warming or cooling trend is inferred from our stable-isotope data for the period 1962-2006. The stable-isotope record of the ice/firn cores could expand well beyond the meteorological record of the region. No significant temporal variation of accumulation rates was detected. However, decreasing accumulation rates were found from coast to hinterland, as well as from east (Halvfarryggen) to west (Søråsen). The deuterium excess (d) exhibits similar differences (higher d at Søråsen, lower d at Halvfarryggen), with a weak negative temporal trend on Halvfarryggen (0.04 per mil/a), probably implying increasing oceanic input. We conclude that Halvfarryggen acts as a natural barrier for moisture-carrying air masses circulating in the region from east to west.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A compilation of 1118 surface sediment samples from the South Atlantic was used to map modern seafloor distribution of organic carbon content in this ocean basin. Using new data on Holocene sedimentation rates, we estimated the annual organic carbon accumulation in the pelagic realm (>3000 m water depth) to be approximately 1.8*10**12 g C/year. In the sediments underlying the divergence zone in the Eastern Equatorial Atlantic (EEA), only small amounts of organic carbon accumulate in spite of the high surface water productivity observed in that area. This implies that in the Eastern Equatorial Atlantic, organic carbon accumulation is strongly reduced by efficient degradation of organic matter prior to its burial. During the Last Glacial Maximum (LGM), accumulation of organic carbon was higher than during the mid-Holocene along the continental margins of Africa and South America (Brazil) as well as in the equatorial region. In the Eastern Equatorial Atlantic in particular, large relative differences between LGM and mid-Holocene accumulation rates are found. This is probably to a great extent due to better preservation of organic matter related to changes in bottom water circulation and not just a result of strongly enhanced export productivity during the glacial period. On average, a two- to three-fold increase in organic carbon accumulation during the LGM compared to mid-Holocene conditions can be deduced from our cores. However, for the deep-sea sediments this cannot be solely attributed to a glacial productivity increase, as changes in South Atlantic deep-water circulation seem to result in better organic carbon preservation during the LGM.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have analyzed the major, trace, and rare earth element composition of surface sediments collected from a transect across the Equator at 135°W longitude in the Pacific Ocean. Comparing the behavior of this suite of elements to the CaCO3, opal, and Corg fluxes (which record sharp maxima at the Equator, previously documented at the same sampling stations) enables us to assess the relative significance of the various pathways by which trace elements are transported to the equatorial Pacific seafloor. The 1. (1) high biogenic source at the Equator, associated with equatorial divergence of surface water and upwelling of nutrient-rich water, and 2. (2) high aluminosilicate flux at 4°N, associated with increased terrigenous input from elevated rainfall at the Intertropical Convergence Zone (ITCZ) of the tradewinds, are the two most important fluxes with which elemental transport is affiliated. The biogenic flux at the Equator transports Ca and Sr structurally bound to carbonate tests and Mn primarily as an adsorbed component. Trace elements such as Cr, As, Pb, and the REEs are also influenced by the biogenic flux at the Equator, although this affiliation is not regionally dominant. Normative calculations suggest that extremely large fluxes of Ba and P at the Equator are carried by only small proportions of barite and apatite phases. The high terrigenous flux at the ITCZ has a profound effect on chemical transport to the seafloor, with elemental fluxes increasing tremendously and in parallel with Ti. Normative calculations, however, indicate that these fluxes are far in excess of what can be supplied by lattice-bound terrigenous phases. The accumulation of Ba is greater than is affiliated with biogenic transport at the Equator, while the P flux at the ITCZ is only 10% less than at the Equator. This challenges the common view that Ba and P are essentially exclusively associated with biogenic fluxes. Many other elements (including Mn, Pb, As, and REEs) also record greater accumulation beneath the ITCZ than at the Equator. Thus, adsorptive scavenging by terrigenous paniculate matter, or phases intimately associated with them, appears to be an extremely important process regulating elemental transport to the equatorial Pacific seafloor. These findings emphasize the role of vertical transport to the sediment, and provide additional constraints on the paleochemical use of trace elements to track biogenic and terrigenous fluxes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effects of eutrophication on short term changes in the microbial community were investigated using high resolution lipid biomarker and trace metal data for sediments from the eutrophic Lake Rotsee (Switzerland). The lake has been strongly influenced by sewage input since the 1850s and is an ideal site for studying an anthropogenically altered ecosystem. Historical remediation measures have had direct implications for productivity and microbial biota, leading to community composition changes and abundance shifts. The higher sewage and nutrient input resulted in a productivity increase, which led predominantly to a radiation in diatoms, primary producers and methanogens between about 1918 and 1921, but also affected all microorganism groups and macrophytes between about 1958 and 1972. Bacterial biomass increased in 1933, which may have been related to the construction of a mechanical sewage treatment plant. Biomarkers also allowed tracing of fossil organic matter/biodegraded oil contamination in the lake. Stephanodiscus parvus, Cyclotella radiosa and Asterionella formosa were the dominant sources of specific diatom biomarkers. Since the 1850s, the cell density of methanogenic Archaea (Methanosaeta spp.) ranged within ca. 0.5-1.8 x 10**9 cells/g dry sediment and the average lipid content of Rotsee Archaea was ca. 2.2 fg iGDGTs/cell. An altered BIT index (BITCH), indicating changes in terrestrial organic matter supply to the lake, is proposed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Barite accumulation rates (BAR) have been measured from 12 DSDP/ODP site globally (DSDP site 525, 549 and ODP site 690, 738, 1051, 1209, 1215, 1220, 1221, 1263,1265 and 1266A) to reconstruct the export production across Paleocene Eocene Thermal Maximum (PETM) around 55.9 million year ago. Our results suggesting a general increase in export productivity. We propose that changes in marine ecosystems, resulting from high atmospheric partial pressure of CO2 and ocean acidification, led to enhanced carbon export from the photic zone to depth, thereby increasing the efficiency of the biological pump. We estimate that an annual carbon export flux out of the euphotic zone and into the deep ocean waters could have amounted to about 15 Gt during the PETM. About 0.4% of this carbon is expected to have entered the refractory dissolved organic pool, where it could be sequestered from the atmosphere for tens of thousands of years. Our estimates are consistent with the amount of carbon redistribution expected for the recovery from the PETM.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Export production is an important component of the carbon cycle, modulating the climate system by transferring CO2 from the atmosphere to the deep ocean via the biological pump. Here we use barite accumulation rates to reconstruct export production in the eastern equatorial Pacific over the past 4.3 Ma. We find that export production fluctuated considerably on multiple time scales. Export production was on average higher (51 g C/m**2/yr) during the Pliocene than the Pleistocene (40 g C/m**2/yr), decreasing between 3 and 1 Ma (from more than 60 to 20 g C/m**2/yr) followed by an increase over the last million years. These trends likely reflect basin-scale changes in nutrient inventory and ocean circulation. Our record reveals decoupling between export production and temperatures on these long (million years) time scale. On orbital time scales, export production was generally higher during cold periods (glacial maxima) between 4.3 and 1.1 Ma. This could be due to stronger wind stress and higher upwelling rates during glacial periods. A shift in the timing of maximum export production to deglaciations is seen in the last ~1.1 million years. Results from this study suggest that, in the eastern equatorial Pacific, mechanisms that affect nutrient supply and/or ecosystem structure and in turn carbon export on orbital time scales differ from those operating on longer time scales and that processes linking export production and climate-modulated oceanic conditions changed about 1.1 million years ago. These observations should be accounted for in climate models to ensure better predictions of future climate change.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The dominant forcing factors for past large-scale changes in vegetation are widely debated. Changes in the distribution of C4 plants-adapted to warm, dry conditions and low atmospheric CO2 concentrations (Collatz et al., 1998, doi:10.1007/s004420050468) -have been attributed to marked changes in environmental conditions, but the relative impacts of changes in aridity, temperature (Pagani et al., 1999, doi:10.1126/science.285.5429.876; Huang et al., 2001, doi:10.1126/science.1060143) and CO2 concentration (Cerling et al., 1993, doi:10.1038/361344a0; Kuypers et al., 1999, doi:10.1038/20659) are not well understood. Here, we present a record of African C4 plant abundance between 1.2 and 0.45 million years ago, derived from compound-specific carbon isotope analyses of wind-transported terrigenous plant waxes. We find that large-scale changes in African vegetation are linked closely to sea surface temperatures in the tropical Atlantic Ocean. We conclude that, in the mid-Pleistocene, changes in atmospheric moisture content - driven by tropical sea surface temperature changes and the strength of the African monsoon - controlled aridity on the African continent, and hence large-scale vegetation changes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Late Miocene-Recent micropaleontological and geochemical records from Ocean Drilling Program (ODP) Site 1143 in the southern South China Sea (SCS) indicate that increase and decrease in abundance of siliceous plankton may be controlled mainly by the input of nutrients derived from land and provided by upwelling. A high export production event - a "biogenic bloom" event - occurred in the southern SCS between 12 and 6 Ma. During this period, high ratios of smectite/(illite + chlorite), smectite/quartz and Al/K indicate a high weathering intensity of the Asian continent, possibly due to the intensification of the East Asian Summer Monsoon (EASM), which may have increased the net flux of nutrients to the ocean, both directly through terrestrial input and indirectly through upwelling activity. A drop in Ba/Ti, Al/Ti and Ca/Ti values around 6 Ma may indicate a lowering of productivity, possibly due to the large consumption of sea surface nutrients by the "biogenic bloom". Alternatively, it may indicate a shift in terrigenous input source area. At about 5.4 Ma, a decrease in weathering intensity, as indicated by a sudden decrease in the values of smectite/(illite + chlorite), smectite/quartz and Al/K, might have led to a sudden decrease of terrestrial nutrient input to the SCS. We suggest that the biogenic bloom ended when nutrients in surface waters were exhausted, because of a decrease in supply as well as a decrease in upwelling intensity due to weakening of the EASM. As a result, radiolarians were absent in the studied area between ~6 and 3.2 Ma. At ~3.2 Ma, radiolarians began to recover, possibly because the start of Northern Hemispheric glaciation and the rapid uplift of the Tibet Plateau led to intensification of the East Asian monsoon. After the Mid-Pleistocene Climate Transition at 0.9 Ma, the abundance and mass accumulation rates of radiolarians increased, probably as a result of increased upwelling activity driven by the increasing intensity of the summer monsoon.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Peat and net carbon accumulation rates in two sub-arctic peat plateaus of west-central Canada have been studied through geochemical analyses and accelerator mass spectrometry (AMS) radiocarbon dating. The peatland sites started to develop around 6600-5900 cal. yr BP and the peat plateau stages are characterized by Sphagnum fuscum peat alternating with rootlet layers. The long-term peat and net carbon accumulation rates for both profiles are 0.30-0.31 mm/yr and 12.5-12.7 gC/m**2/yr, respectively. These values reflect very slow peat accumulation (0.04-0.09 mm/yr) and net carbon accumulation (3.7-5.2 gC/m**2/yr) in the top rootlet layers. Extensive AMS radiocarbon dating of one profile shows that accumulation rates are variable depending on peat plateau stage. Peat accumulation rates are up to six times higher and net carbon accumulation rates up to four times higher in S. fuscum than in rootlet stages. Local fires represented by charcoal remains in some of the rootlet layers result in very low accumulation rates. High C/N ratios throughout most of the peat profiles suggest low degrees of decomposition due to stable permafrost conditions. Hence, original peat accretion has remained largely unaltered, except in the initial stages of peatland development when permafrost was not yet present.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Here we present orbitally-resolved records of terrestrial higher plant leaf wax input to the North Atlantic over the last 3.5 Ma, based on the accumulation of long-chain n-alkanes and n-alkanl-1-ols at IODP Site U1313. These lipids are a major component of dust, even in remote ocean areas, and have a predominantly aeolian origin in distal marine sediments. Our results demonstrate that around 2.7 million years ago (Ma), coinciding with the intensification of the Northern Hemisphere glaciation (NHG), the aeolian input of terrestrial material to the North Atlantic increased drastically. Since then, during every glacial the aeolian input of higher plant material was up to 30 times higher than during interglacials. The close correspondence between aeolian input to the North Atlantic and other dust records indicates a globally uniform response of dust sources to Quaternary climate variability, although the amplitude of variation differs among areas. We argue that the increased aeolian input at Site U1313 during glacials is predominantly related to the episodic appearance of continental ice sheets in North America and the associated strengthening of glaciogenic dust sources. Evolutional spectral analyses of the n-alkane records were therefore used to determine the dominant astronomical forcing in North American ice sheet advances. These results demonstrate that during the early Pleistocene North American ice sheet dynamics responded predominantly to variations in obliquity (41 ka), which argues against previous suggestions of precession-related variations in Northern Hemisphere ice sheets during the early Pleistocene.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This datafile presents chemical and physical as well as age dating information from the Store Mosse peat bog in southern Sweden. This record dates back to 8900 cal yr BP. The aim of the research was to reconstruct mineral dust deposition over time. As such we have only presented the lithogenic element data (Al, Ga, Rb, Sc, Ti, Y, Zr, Th and the REE) as the sample preparation method was tailored to these. This data is supported by parameters describing the deposit including bulk density, humification, ash content and net peat accumulation rates.