981 resultados para MULTICOMPONENT CARBONATE SYSTEM


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Juvenile colonies of massive Porites spp. were exposed to manipulated pH and bicarbonate ([HCO3-]) in situ to test the hypothesis that ocean acidification (OA) does not affect respiration and calcification. Incubations lasted 28 h and exposed corals to ambient temperature and light with ecologically relevant water motion. Three treatments were applied: (1) ambient conditions of pH 8.04 and 1751 µmol HCO3- kg(-1) (Treatment 1), (2) pCO2-induced ocean acidification of pH 7.73 and 2011 µmol HCO3- kg(-1) (Treatment 2), and (3) pCO2 and HCO3--enriched seawater of pH 7.69 and 2730 µmol HCO3- kg(-1) (Treatment 3). The third treatment providing elevated [HCO3-] was used to test for stimulatory effects of dissolved inorganic carbon on calcification under low pH and low saturation of aragonite (Omega arag), but it does not reflect conditions expected to occur under CO2-driven OA. Calcification of juvenile massive Porites spp. was affected by treatments, with an 81% elevation in Treatment 3 versus Treatment 1, but no difference between Treatments 1 and 2; respiration and the metabolic expenditure concurrent with calcification remained unaffected. These findings indicate that juvenile massive Porites spp. are resistant to short exposures to OA in situ, and separately, that they can increase calcification at low pH and low Omega arag if [HCO3-] is elevated. Juvenile Porites spp. may therefore be limited by dissolved inorganic carbon under ambient pCO2 conditions

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rising atmospheric CO2-concentrations will have severe consequences for a variety of biological processes. We investigated the responses of the green alga Ulva lactuca (Linnaeus) to rising CO2-concentrations in a rockpool scenario. U. lactuca was cultured under aeraton with air containing either preindustrial pCO2 (280µatm) or for the end of the 21st century predicted (700µatm) pCO2 for 31 days. We addressed the following question: Will elevated CO2-concentrations affect photosynthesis (net photosynthesis, rETR(max), Fv/Fm, pigment composition) and growth of U. lactuca in rockpools with limited water exchange? Two phases of the experiment were distinguished: In the initial phase (day 1-4) the Seawater Carbonate System (SWCS) of the culture medium could be adjusted to the selected atmospheric pCO2 condition by continuous aeration with target pCO2 values. In the second phase (day 4-31) the SWCS was largely determined by the metabolism of the growing U. lactuca biomass. In the initial phase, Fv/Fm and rETR(max) were only slightly elevated at high CO2-concentrations whereas growth was significantly enhanced. After 31 days the Chl a content of the thalli was significantly lower under future conditions and the photosynthesis of thalli grown under preindustrial conditions was not dependent on external carbonic anhydrase. Biomass increased significantly at high CO2-concentrations. At low CO2-concentrations most adult thalli disintegrated between day 14 and 21, whereas at high CO2-concentrations most thalli remained integer until day 31. Thallus disintegration at low CO2-concentrations was mirrored in a drastic decline in seawater DIC and HCO3-. Accordingly, the SWCS differed significantly between the treatments. Our results indicated a slight enhancement of photosynthetic performance and significantly elevated growth of U. lactuca at future CO2-concentrations. The accelerated thallus disintegration at high CO2-concentrations under conditions of limited water exchange indicates additional CO2 effects on the life cycle of U. lactuca when living in rockpools.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a 5.3-Myr stack (the ''LR04'' stack) of benthic d18O records from 57 globally distributed sites aligned by an automated graphic correlation algorithm. This is the first benthic delta18O stack composed of more than three records to extend beyond 850 ka, and we use its improved signal quality to identify 24 new marine isotope stages in the early Pliocene. We also present a new LR04 age model for the Pliocene-Pleistocene derived from tuning the delta18O stack to a simple ice model based on 21 June insolation at 65 N. Stacked sedimentation rates provide additional age model constraints to prevent overtuning. Despite a conservative tuning strategy, the LR04 benthic stack exhibits significant coherency with insolation in the obliquity band throughout the entire 5.3 Myr and in the precession band for more than half of the record. The LR04 stack contains significantly more variance in benthic delta18O than previously published stacks of the late Pleistocene as the result of higher resolution records, a better alignment technique, and a greater percentage of records from the Atlantic. Finally, the relative phases of the stack's 41- and 23-kyr components suggest that the precession component of delta18O from 2.7-1.6 Ma is primarily a deep-water temperature signal and that the phase of d18O precession response changed suddenly at 1.6 Ma.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Although ocean acidification is expected to impact (bio)calcification by decreasing the seawater carbonate ion concentration, [CO3]2-, there exists evidence of non-uniform response of marine calcifying plankton to low seawater [CO3]2-. This raises questions on the role of environmental factors other than acidification and on the complex physiological responses behind calcification. Here we investigate the synergistic effect of multiple environmental parameters, including temperature, nutrient (nitrate and phosphate) availability, and seawater carbonate chemistry on the coccolith calcite mass of the cosmopolitan coccolithophore Emiliania huxleyi, the most abundant species in the world ocean. We use a suite of surface (late Holocene) sediment samples from the South Atlantic and southwestern Indian Ocean taken from depths lying well above the modern lysocline. The coccolith calcite mass in our results presents a latitudinal distribution pattern that mimics the main oceanographic features, thereby pointing to the potential importance of phosphorus and temperature in determining coccolith mass by affecting primary calcification and possibly driving the E. huxleyi morphotype distribution. This evidence does not necessarily argue against the potentially important role of the rapidly changing seawater carbonate chemistry in the future, when unabated fossil fuel burning will likely perturb ocean chemistry beyond a critical point. Rather our study highlights the importance of evaluating the combined effect of several environmental stressors on calcifying organisms to project their physiological response(s) in a high CO2 world and improve interpretation of paleorecords.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High-resolution study of Antarctic planktonic foraminiferal assemblages (Ocean Drilling Program Site 690, Weddell Sea) shows that these microplankton underwent a stepwise series of changes during the Paleocene-Eocene thermal maximum (PETM). Initiation of this response coincides with the onset of the carbon isotope excursion (CIE) but precedes the benthic foraminiferal mass extinction. The "top-to-bottom" succession in the biotic response indicates that the surface ocean/atmosphere was affected before the deep sea. The earliest stage of the faunal response entailed a conspicuous turnover within the shallow-dwelling genus Acarinina and a succession of stratigraphic first appearances. The genus Morozovella, large (>180 µm) biserial planktonics, and A. wilcoxensis are all restricted to the lower CIE within this PETM section. Acarininid populations crashed as the ocean/climate system ameliorated during the CIE recovery, reflecting atypical surface water conditions. This transient decline in acarininids is paralleled by a marked increase in carbonate content of sediments. It is postulated that this interval of carbonate enrichment, and its unusual microfauna, reflects enhanced carbon storage within reservoirs of the global carbon cycle other than the marine carbonate system (sensu Broecker et al., 1993, doi:10.1029/93PA00423; Ravizza et al., 2001, doi:10.1029/2000PA000541).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Here, the pelagic carbonate system and the ?13C signature of dissolved inorganic carbonate (DIC) were investigated in a tidal basin of the southern North Sea, the Jade Bay, with respect to tidal cycles and a transect towards the North Sea in winter time (January and November, 2010). Physical parameters, major and trace elements, and nutrient concentrations were considered, too. Primary production and pelagic organic matter respiration were negligible during winter time. Both, the compositional variations on the transects as well as during the tidal cycles indicate the mixing of North Sea with fresh water. The combined spatial co-variations of different parameters indicate an introduction of fresh water that was enriched in DI12C, metabolites (e.g., ammonia), protons, and dissolved redox-sensitive elements (e.g., Mn2+). During the January campaign, the discharge via the flood gates was limited due to ice cover of the hinterland drainage ditches, allowing for an observation of tidal variations without significant mixing contributions from surface water discharges. Considering a binary mixing model with North Sea and fresh water as end-members, the extrapolated fresh water end-member composition for this campaign is estimated to contain about 3.8 mmol/kg DIC , and enhanced concentrations of NH4+, Mn2+, and protons compared to North Sea water. The fast temporal response of dissolved geochemical tracers on tidal variations in the Jade Bay indicates a continuous supply of a fresh water component. The measured composition of fresh waters entering the Jade Bay via flood gates (end of October, 2010) did not match the values estimated by the binary mixing model. Therefore, the overall fresh water component likely is a mixture between sources originating from flood gates and (in January) dominating submarine groundwater discharge entering the Jade Bay. This model is consistent with the results obtained during the November campaign, when a more important contribution from flood gates is expected and a more variable fresh water end-member is estimated. The co-variations of the concentrations and the stable carbon isotope composition of DIC are applied to evaluate possible superimposed sink-source-transformation processes in the coastal waters and a general co-variation scheme is suggested.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Accurately quantifying deep-sea calcite dissolution is crucial for understanding the role of the marine carbonate system in regulating atmospheric pCO2 over millennia. We compare a foraminifer-fragmentation-based calcite dissolution proxy (Globorotalia menardii fragmentation index (MFI)) to Mg/Ca, Sr/Ca, and Mg/Sr in several species of deep dwelling planktonic foraminifers. We conducted microfossil and geochemical analyses on the same core top samples taken at different depths on the Ontong Java Plateau to maximize the dissolution signal and minimize the temperature overprint on our data. We also compare elemental ratios from planktonic foraminifer tests to modern bottom water [CO3]2- undersaturation and model-derived estimates of percent calcite dissolved in deep-sea sediments. We find clear linear decreases in Mg/Ca or Mg/Sr in G. menardii and Pulleniatina obliquiloculata with increasing (1) bottom water [CO3]2- undersaturation, (2) percent calcite dissolved in sediments calculated with biogeochemical modeling, (3) MFI, and (4) percent calcite dissolved derived from MFI. These findings lend further support to MFI as a calcite dissolution proxy for deep-sea sediments. In contrast, we find no significant correlation between Sr/Ca and independent dissolution indicators. Our results suggest that Mg/Ca and Mg/Sr from deep dwelling foraminifers could potentially be used as calcite dissolution proxies in combination with independent water temperature estimates. Likewise, establishing the relationship between MFI and dissolution-induced changes in the Mg/Ca of surface-dwelling foraminifers could provide a tool to correct Mg/Ca-derived sea surface temperature reconstructions for calcite dissolution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Red Sea has a special place among the adjacent seas of the world. High evaporation, exclusion of its deep water from contact with the Indian Ocean proper and complete absence of continental drainage may result special conditions of the chemistry of the Red Sea. This paper aims to describe and explain the peculiarity of the hydrochemical situation. The influence of the topography, of the inflow and outflow through the straights of Bab el Mandeb, of the evaporation, of the stability of the water layers, and of the circulation will be studied. An attempt is made to estimate the apparent oxygen ultilisation in order to obtain an indication of the biological activity. A further attempt is made toward the quantitative estimation of the circulation of the nutrients and also to obtain some information about transport, dissolution, and precipitation of calcium carbonate. The basis of these investigations are mainly observations of R. V. "Meteor" during the International Indian Ocean Expedition 1964/65. The determination of dissolved oxygen, dissolved inorganic phosphate, nitrate, nitrite, ammonia, pH, alkalinity, silicate as well as salinity and temperature forms the necessary basis for such an investigation of the chemical conditions. In the first chapter the methods and some modifications for the determination of the chemical properties as applied during the I.I.O.E. cruise of R. V. "Meteor" are described. The new methods, as worked out and tested under sea going conditions during several years by the author, are described in more detail. These are the methods for nitrate, silicate, the automatic determination of dissolved inorganic phosphate and silicate, the automated determination of total phosphorus, the in situ recording of the oxygen tension, and the modification for the determination of ammonia, calcium, and dissolved oxygen. With these revised methods more than 18,000 determinations have been carried out during the Indian Ocean cruise. The complete working up of the chemical data of the Indian Ocean Expedition of R. V. "Meteor" is devided into four sections: Contributions 1) to the Chemistry of the Red Sea and the Inner Gulf of Aden, 2) to the Gulf of Aden and the Somali Coast Region, 3) to the Western Indian Coast Region, and 4) to the Persian Gulf and the Straits of Oman. This paper presents the first contribution. The special hydrographical conditions are discussed. It can be shown, that the increase of salinity in the surface waters from the south to the north of the Red Sea is only to about 30 % due to evaporation. The remaining increase is presumed to be due to the admixture of deep water to the surface layers. A special rate for the consumption of oxygen (0.114 ml/ l/a) is derived for the deep water of the Red Sea at 1500 m. Based upon the distribution of the dissolved oxygen along the axii of the Red Sea, a chematic model for the longitudinal circulation of the Red Sea is constructed. This model should be considered as a first approximation and may explain the special distribution of phosphate, nitrate, and silicate. Based upon the evaluation of the residence time of the deep water a dissolution rate for silicate is estimated as 1 mygat/a. It seems possible to calculate residence times of water masses outside the Red Sea from the silicate content. The increase of silicate and the consumption of oxygen lead to residence times of the water below the thermocine of 30 to 48 years. The distribution of oxygen in the Straits of Bab el Mandeb is described and discussed. The rate of consumption of the oxygen in the outflowing Red Sea water is estimated to 8.5 ml/ l/a. This rather high rate is explained with reference to the special conditions in the outflowing water. The Red Sea water is characterized initially by a relative high content of oxygen and a low content of nutrients. The increase in nutrients and the decrease in the oxygen content is a secondary process of the Red Sea water on its way to the Arabian Sea. Based upon the vertical distribution of the dissolved inorganic phosphate vertical exchange coefficients of 1 - 4 g/cm/sec and vertical current speeds of 10**-5 to 10**-4 cm/sec are calculated for some stations in the Red Sea. The distribution of phosphate, silicate, nitrate, nitrite and ammonia for the Red Sea and the Straits of Bab el Mandeb are discussed. The special circulation is evaluated and the balance of the nutrients is estimated by means of the brutto transport. The nutrient deficit is assumed to be balanced by sporadic inflow of intermediate water from the Gulf of Aden. An example for such an inflow has been observed and is demonstrated. The silicate-salinity relationships are a suitable way for characterizing water masses in the Red Sea. Equations for the calculation of the different components from the carbonate system, the ion activities, and the calcium carbonate saturation are evaluated. The influence of temperature and pressure is taken into account. The carbonate saturation is calculated from the determined concentrations of calcium, alkalinity, and the hydrogen ion activity. Saturation values of 320 % are found for the surface layer and of 100% ± 1 for the deep water. The extraordinary equilibrium conditions may explain the constant Ca/Cl ratio and also the sedimentation of undissolved carbonate skelecons even in greater depths. A main sedimentation rate of 2 * 10**-3cm/year is evaluated from a total sedimentation of 10 * 106 to/a of calcium carbonate in the Red Sea. The appendix contains those data, which are not published in the data volume of the I.I.O.E. expedition of R. V. "Meteor".

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present data publication provides permanent links to original and updated versions of validated data files. The data files include properties of seawater, particulate matter and dissolved matter that were measured from discrete water samples collected with Niskin bottles during the 2009-2013 Tara Oceans expedition. Properties include pigment concentrations from HPLC analysis (10 depths per vertical profile, 25 pigments per depth), the carbonate system (Surface and 400m; pH (total scale), CO2, pCO2, fCO2, HCO3, CO3, Total alkalinity, Total carbon, OmegaAragonite, OmegaCalcite, and dosage Flags), nutrients (10 depths per vertical profile; NO2, PO4, N02/NO3, SI, quality Flags), DOC, CDOM, and dissolved oxygen isotopes. The Service National d'Analyse des Paramètres Océaniques du CO2, at the Université Pierre et Marie Curie, determined CT and AT potentiometrically (Edmond 1970; DOE 1994) on samples preserved according to Dickson et al. (2007). More than 250 vertical profiles of these properties were made across the world ocean. DOC, CDOM and dissolved oxygen isotopes are available only for the Arctic Ocean and Arctic Seas (2013).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Tara Oceans Expedition (2009-2013) was a global survey of ocean ecosystems aboard the Sailing Vessel Tara. It carried out extensive measurements of evironmental conditions and collected plankton (viruses, bacteria, protists and metazoans) for later analysis using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set includes properties of seawater, particulate matter and dissolved matter that were measured from discrete water samples collected with Niskin bottles during the 2009-2013 Tara Oceans expedition. Properties include pigment concentrations from HPLC analysis (10 depths per vertical profile, 25 pigments per depth), the carbonate system (Surface and 400m; pH (total scale), CO2, pCO2, fCO2, HCO3, CO3, Total alkalinity, Total carbon, OmegaAragonite, OmegaCalcite, and dosage Flags), nutrients (10 depths per vertical profile; NO2, PO4, N02/NO3, SI, quality Flags), DOC, CDOM, and dissolved oxygen isotopes. The Service National d'Analyse des Paramètres Océaniques du CO2, at the Université Pierre et Marie Curie, determined CT and AT potentiometrically. More than 200 vertical profiles of these properties were made across the world ocean. DOC, CDOM and dissolved oxygen isotopes are available only for the Arctic Ocean and Arctic Seas (2013).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Tara Oceans Expedition (2009-2013) was a global survey of ocean ecosystems aboard the Sailing Vessel Tara. It carried out extensive measurements of evironmental conditions and collected plankton (viruses, bacteria, protists and metazoans) for later analysis using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set includes properties of seawater, particulate matter and dissolved matter that were measured from discrete water samples collected with Niskin bottles during the 2009-2013 Tara Oceans expedition. Properties include pigment concentrations from HPLC analysis (10 depths per vertical profile, 25 pigments per depth), the carbonate system (Surface and 400m; pH (total scale), CO2, pCO2, fCO2, HCO3, CO3, Total alkalinity, Total carbon, OmegaAragonite, OmegaCalcite, and dosage Flags), nutrients (10 depths per vertical profile; NO2, PO4, N02/NO3, SI, quality Flags), DOC, CDOM, and dissolved oxygen isotopes. The Service National d'Analyse des Paramètres Océaniques du CO2, at the Université Pierre et Marie Curie, determined CT and AT potentiometrically. More than 200 vertical profiles of these properties were made across the world ocean. DOC, CDOM and dissolved oxygen isotopes are available only for the Arctic Ocean and Arctic Seas (2013).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Tara Oceans Expedition (2009-2013) was a global survey of ocean ecosystems aboard the Sailing Vessel Tara. It carried out extensive measurements of evironmental conditions and collected plankton (viruses, bacteria, protists and metazoans) for later analysis using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set includes properties of seawater, particulate matter and dissolved matter that were measured from discrete water samples collected with Niskin bottles during the 2009-2013 Tara Oceans expedition. Properties include pigment concentrations from HPLC analysis (10 depths per vertical profile, 25 pigments per depth), the carbonate system (Surface and 400m; pH (total scale), CO2, pCO2, fCO2, HCO3, CO3, Total alkalinity, Total carbon, OmegaAragonite, OmegaCalcite, and dosage Flags), nutrients (10 depths per vertical profile; NO2, PO4, N02/NO3, SI, quality Flags), DOC, CDOM, and dissolved oxygen isotopes. The Service National d'Analyse des Paramètres Océaniques du CO2, at the Université Pierre et Marie Curie, determined CT and AT potentiometrically. More than 200 vertical profiles of these properties were made across the world ocean. DOC, CDOM and dissolved oxygen isotopes are available only for the Arctic Ocean and Arctic Seas (2013).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Tara Oceans Expedition (2009-2013) was a global survey of ocean ecosystems aboard the Sailing Vessel Tara. It carried out extensive measurements of evironmental conditions and collected plankton (viruses, bacteria, protists and metazoans) for later analysis using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set includes properties of seawater, particulate matter and dissolved matter that were measured from discrete water samples collected with Niskin bottles during the 2009-2013 Tara Oceans expedition. Properties include pigment concentrations from HPLC analysis (10 depths per vertical profile, 25 pigments per depth), the carbonate system (Surface and 400m; pH (total scale), CO2, pCO2, fCO2, HCO3, CO3, Total alkalinity, Total carbon, OmegaAragonite, OmegaCalcite, and dosage Flags), nutrients (10 depths per vertical profile; NO2, PO4, N02/NO3, SI, quality Flags), DOC, CDOM, and dissolved oxygen isotopes. The Service National d'Analyse des Paramètres Océaniques du CO2, at the Université Pierre et Marie Curie, determined CT and AT potentiometrically. More than 200 vertical profiles of these properties were made across the world ocean. DOC, CDOM and dissolved oxygen isotopes are available only for the Arctic Ocean and Arctic Seas (2013).