143 resultados para direct current distribution


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Species distribution models (SDM) predict species occurrence based on statistical relationships with environmental conditions. The R-package biomod2 which includes 10 different SDM techniques and 10 different evaluation methods was used in this study. Macroalgae are the main biomass producers in Potter Cove, King George Island (Isla 25 de Mayo), Antarctica, and they are sensitive to climate change factors such as suspended particulate matter (SPM). Macroalgae presence and absence data were used to test SDMs suitability and, simultaneously, to assess the environmental response of macroalgae as well as to model four scenarios of distribution shifts by varying SPM conditions due to climate change. According to the averaged evaluation scores of Relative Operating Characteristics (ROC) and True scale statistics (TSS) by models, those methods based on a multitude of decision trees such as Random Forest and Classification Tree Analysis, reached the highest predictive power followed by generalized boosted models (GBM) and maximum-entropy approaches (Maxent). The final ensemble model used 135 of 200 calculated models (TSS > 0.7) and identified hard substrate and SPM as the most influencing parameters followed by distance to glacier, total organic carbon (TOC), bathymetry and slope. The climate change scenarios show an invasive reaction of the macroalgae in case of less SPM and a retreat of the macroalgae in case of higher assumed SPM values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study compiles the controlling factors for organic matter sedimentation patterns from a suite of organogeochemical parameters in surface sediments off Spitsbergen and direct seabed observations using a Remotely Operated Vehicle (ROV). In addition we assess its storage rates as well as the potential of carbon sinks on the northwestern margin of the Barents Sea with short sediment cores from a selected fjord environment (Storfjord). While sedimentation in the fjords is mainly controlled by river/meltwater discharge and coastal erosion by sea ice/glaciers resulting in high supply of terrigenous organic matter, Atlantic water inflow, and thus enhanced marine organic matter supply, characterizes the environment on the outer shelf and slope. Local deviations from this pattern, particularly on the shelf, are due to erosion and out washing of fine-grained material by bottom currents. Spots dominated by marine productivity close to the island have been found at the outer Isfjord and west off Prins Karls Forland as well as off the Kongsfjord/Krossfjord area and probably reflect local upwelling of nutrient-rich Atlantic water-derived water masses. Accumulation rates of marine organic carbon as well as reconstructed primary productivities decreased since the middle of the last century. Negative correlation of the Isfjord temperature record with reconstructed productivities in the Storfjord could be explained by a reduced annual duration of the marginal ice zone in the area due to global warming. Extremely high accumulation rates of marine organic carbon between 5.4 and 17.2 g/m**2/yr mark the Storfjord area, and probably high-latitude fjord environments in general, as a sink for carbon dioxide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stable isotope and ice-rafted debris records from three core sites in the mid-latitude North Atlantic (IODP Site U1313, MD01-2446, MD03-2699) are combined with records of ODP Sites 1056/1058 and 980 to reconstruct hydrographic conditions during the middle Pleistocene spanning Marine Isotope Stages (MIS) 9-14 (300-540 ka). Core MD03-2699 is the first high-resolution mid-Brunhes record from the North Atlantic's eastern boundary upwelling system covering the complete MIS 11c interval and MIS 13. The array of sites reflect western and eastern basin boundary current as well as north to south transect sampling of subpolar and transitional water masses and allow the reconstruction of transport pathways in the upper limb of the North Atlantic's circulation. Hydrographic conditions in the surface and deep ocean during peak interglacial MIS 9 and 11 were similar among all the sites with relative stable conditions and confirm prolonged warmth during MIS 11c also for the mid-latitudes. Sea surface temperature (SST) reconstructions further reveal that in the mid-latitude North Atlantic MIS 11c is associated with two plateaus, the younger one of which is slightly warmer. Enhanced subsurface northward heat transport in the eastern boundary current system, especially during early MIS 11c, is denoted by the presence of tropical planktic foraminifer species and raises the question how strongly it impacted the Portuguese upwelling system. Deep water ventilation at the onset of MIS 11c significantly preceded surface water ventilation. Although MIS 13 was generally colder and more variable than the younger interglacials the surface water circulation scheme was the same. The greatest differences between the sites existed during the glacial inceptions and glacials. Then a north - south trending hydrographic front separated the nearshore and offshore waters off Portugal. While offshore waters originated from the North Atlantic Current as indicated by the similarities between the records of IODP Site U1313, ODP Site 980 and MD01-2446, nearshore waters as recorded in core MD03-2699 derived from the Azores Current and thus the subtropical gyre. Except for MIS 12, Azores Current influence seems to be related to eastern boundary system dynamics and not to changes in the Atlantic overturning circulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This is part 2 of a study examining southwest African continental margin sediments from nine sites on a north-south transect from the Congo Fan (4°S) to the Cape Basin (30°S) representing two glacial (MIS 2 and 6a) and two interglacial stages (MIS 1 and 5e). Contents, distribution patterns, and molecular stable carbon isotope signatures of long-chain n-alkanes (C27-C33) and n-alkanols (C22-C32) as indicators of land plant vegetation of different biosynthetic types were correlated with concentrations and distributions of pollen taxa in sediments of the same time horizons. Selected single pollen type data reveal details of vegetation changes, but the overall picture is best illustrated by summing pollen known to predominantly derive from C4 plants or C4 plus CAM plants. The C4 plant signals in the biomarkers are recorded in the delta13C data and in the abundances of C31 and C33 n-alkanes, and the C32 n-alkanol. Calculated clusters of wind trajectories for austral summer and winter situations for the Holocene and the Last Glacial Maximum afford information on the source areas for the lipids and pollen and their transport pathways to the ocean. This multidisciplinary approach provides clear evidence of latitudinal differences in leaf wax lipid and pollen composition, with the Holocene sedimentary data paralleling the current major phytogeographic zonations. The northern sites (Congo Fan area and northern Angola Basin) get most of their terrestrial material from the Congo Basin and the Angolan highlands dominated by C3 plants. Airborne particulates derived from the western and central South African hinterland dominated by deserts, semideserts, and savannah regions are rich in organic matter from C4 plants. As can be expected from the present and glacial positions of the phytogeographic zones, the carbon isotopic signatures of n-alkanes and n-alkanols both become isotopically more enriched in 13C from north to south. In the northern part of the transect the relative importance of C4 plant indicators is higher during the glacials than in the interglacials, indicating a northward extension of arid zones favoring grass vegetation. In the south, where grass-rich vegetation merges into semidesert and desert, the difference in C4 plant indicators is small.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the Persian Gulf and the Gulf of Oman marl forms the primary sediment cover, particularly on the Iranian side. A detailed quantitative description of the sediment components > 63 µ has been attempted in order to establish the regional distribution of the most important constituents as well as the criteria governing marl sedimentation in general. During the course of the analysis, the sand fraction from about 160 bottom-surface samples was split into 5 phi° fractions and 500 to 800 grains were counted in each individual fraction. The grains were cataloged in up to 40 grain type catagories. The gravel fraction was counted separately and the values calculated as weight percent. Basic for understanding the mode of formation of the marl sediment is the "rule" of independent availability of component groups. It states that the sedimentation of different component groups takes place independently, and that variation in the quantity of one component is independent of the presence or absence of other components. This means, for example, that different grain size spectrums are not necessarily developed through transport sorting. In the Persian Gulf they are more likely the result of differences in the amount of clay-rich fine sediment brought in to the restricted mouth areas of the Iranian rivers. These local increases in clayey sediment dilute the autochthonous, for the most part carbonate, coarse fraction. This also explains the frequent facies changes from carbonate to clayey marl. The main constituent groups of the coarse fraction are faecal pellets and lumps, the non carbonate mineral components, the Pleistocene relict sediment, the benthonic biogene components and the plankton. Faecal pellets and lumps are formed through grain size transformation of fine sediment. Higher percentages of these components can be correlated to large amounts of fine sediment and organic C. No discernable change takes place in carbonate minerals as a result of digestion and faecal pellet formation. The non-carbonate sand components originate from several unrelated sources and can be distinguished by their different grain size spectrum; as well as by other characteristics. The Iranian rivers supply the greatest amounts (well sorted fine sand). Their quantitative variations can be used to trace fine sediment transport directions. Similar mineral maxima in the sediment of the Gulf of Oman mark the path of the Persian Gulf outflow water. Far out from the coast, the basin bottoms in places contain abundant relict minerals (poorly sorted medium sand) and localized areas of reworked salt dome material (medium sand to gravel). Wind transport produces only a minimal "background value" of mineral components (very fine sand). Biogenic and non-biogenic relict sediments can be placed in separate component groups with the help of several petrographic criteria. Part of the relict sediment (well sorted fine sand) is allochthonous and was derived from the terrigenous sediment of river mouths. The main part (coarse, poorly sorted sediment), however, was derived from the late Pleistocene and forms a quasi-autochthonous cover over wide areas which receive little recent sedimentation. Bioturbation results in a mixing of the relict sediment with the overlying younger sediment. Resulting vertical sediment displacement of more than 2.5 m has been observed. This vertical mixing of relict sediment is also partially responsible for the present day grain size anomalies (coarse sediment in deep water) found in the Persian Gulf. The mainly aragonitic components forming the relict sediment show a finely subdivided facies pattern reflecting the paleogeography of carbonate tidal flats dating from the post Pleistocene transgression. Standstill periods are reflected at 110 -125m (shelf break), 64-61 m and 53-41 m (e.g. coare grained quartz and oolite concentrations), and at 25-30m. Comparing these depths to similar occurrences on other shelf regions (e. g. Timor Sea) leads to the conclusion that at this time minimal tectonic activity was taking place in the Persian Gulf. The Pleistocene climate, as evidenced by the absence of Iranian river sediment, was probably drier than the present day Persian Gulf climate. Foremost among the benthonic biogene components are the foraminifera and mollusks. When a ratio is set up between the two, it can be seen that each group is very sensitive to bottom type, i.e., the production of benthonic mollusca increases when a stable (hard) bottom is present whereas the foraminifera favour a soft bottom. In this way, regardless of the grain size, areas with high and low rates of recent sedimentation can be sharply defined. The almost complete absence of mollusks in water deeper than 200 to 300 m gives a rough sedimentologic water depth indicator. The sum of the benthonic foraminifera and mollusca was used as a relative constant reference value for the investigation of many other sediment components. The ratio between arenaceous foraminifera and those with carbonate shells shows a direct relationship to the amount of coarse grained material in the sediment as the frequence of arenaceous foraminifera depends heavily on the availability of sand grains. The nearness of "open" coasts (Iranian river mouths) is directly reflected in the high percentage of plant remains, and indirectly by the increased numbers of ostracods and vertebrates. Plant fragments do not reach their ultimate point of deposition in a free swimming state, but are transported along with the remainder of the terrigenous fine sediment. The echinoderms (mainly echinoids in the West Basin and ophiuroids in the Central Basin) attain their maximum development at the greatest depth reached by the action of the largest waves. This depth varies, depending on the exposure of the slope to the waves, between 12 to 14 and 30 to 35 m. Corals and bryozoans have proved to be good indicators of stable unchanging bottom conditions. Although bryozoans and alcyonarian spiculae are independent of water depth, scleractinians thrive only above 25 to 30 m. The beginning of recent reef growth (restricted by low winter temperatures) was seen only in one single area - on a shoal under 16 m of water. The coarse plankton fraction was studied primarily through the use of a plankton-benthos ratio. The increase in planktonic foraminifera with increasing water depth is here heavily masked by the "Adjacent sea effect" of the Persian Gulf: for the most part the foraminifera have drifted in from the Gulf of Oman. In contrast, the planktonic mollusks are able to colonize the entire Persian Gulf water body. Their amount in the plankton-benthos ratio always increases with water depth and thereby gives a reliable picture of local water depth variations. This holds true to a depth of around 400 m (corresponding to 80-90 % plankton). This water depth effect can be removed by graphical analysis, allowing the percentage of planktonic mollusks per total sample to be used as a reference base for relative sedimentation rate (sedimentation index). These values vary between 1 and > 1000 and thereby agree well with all the other lines of evidence. The "pteropod ooze" facies is then markedly dependent on the sedimentation rate and can theoretically develop at any depth greater than 65 m (proven at 80 m). It should certainly no longer be thought of as "deep sea" sediment. Based on the component distribution diagrams, grain size and carbonate content, the sediments of the Persian Gulf and the Gulf of Oman can be grouped into 5 provisional facies divisions (Chapt.19). Particularly noteworthy among these are first, the fine grained clayey marl facies occupying the 9 narrow outflow areas of rivers, and second, the coarse grained, high-carbonate marl facies rich in relict sediment which covers wide sediment-poor areas of the basin bottoms. Sediment transport is for the most part restricted to grain sizes < 150 µ and in shallow water is largely coast-parallel due to wave action at times supplemented by tidal currents. Below the wave base gravity transport prevails. The only current capable of moving sediment is the Persian Gulf outflow water in the Gulf of Oman.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantitative records of Globorotalia puncticulata and Globorotalia inflata, the last two members of the Globorotalia (Globoconella) lineage, obtained from North Atlantic sediments collected at DSDP Site 552, ODP Site 659 and ODP Site 665, are used to examine fluctuations in the biogeographic distribution of these species in the Late Pliocene between 3 and 2 Ma. Abundance data indicate that prior to the expansion of Northern Hemisphere glaciation at about 2.5 Ma, Gr. puncticulata was an important component of the planktonic foraminiferal fauna and had a geographic distribution ranging from 2°N to at least 56°N in the North Atlantic. A previously undescribed 6 chambered variant of Gr. puncticulata is found at both Sites 659 and 665. The stratigraphic distribution of this morphotype is restricted, first occurring at 2.9 Ma and then disappearing when glacial intensity increased at 2.75 Ma (isotope stage 110). Similar declines in Gr. puncticulata abundances occurred during glacial isotope stages 102, 100, and 98 immediately prior to the extinction of Gr. puncticulata during glacial isotope stage 96. It appears that this extinction event was latitudinally diachronous within the North Atlantic, occurring earliest in the north at Site 552 (2.453 Ma), then at Site 659 (2.443 Ma) and later still in the Site 665 equatorial record (2.438 Ma). At Site 665 the first record of Gr. inflata occurs during glacial isotope stage 94 (2.416 Ma), shortly after the extinction of Gr. puncticulata. In the mid latitude North Atlantic there was a 340,000 year period following the disappearance of Gr. puncticulata when the Globoconella lineage was absent (the Gr. inflata gap). The Gr. inflata population found in the equatorial Atlantic must therefore have been introduced from the South Atlantic, probably by the South Equatorial Current. Faunal records from Sites 552 and 659 show that it was not until glacial isotope stage 78 (2.10 Ma) that Gr. inflata became widely established in the North Atlantic. Prior to this large-scale migration event, there were two limited colonisation events during glacial isotope stages 86 and 82 when Gr. inflata populations reached as far as Site 659 in the eastern North Atlantic. These incursions are believed to be reflect the entrainment of Gr. inflata within South Atlantic Central Water and the northward subsurface transport of individuals to the coastal upwelling zone off northwest Africa. It seems likely that the same mechanism was responsible for the re-establishment of the Globoconella lineage in the North Atlantic at 2.10 Ma, but in this instance additional factors, such as enhanced glacial circulation patterns and ecological changes within planktonic foraminiferal faunas, resulted in the successful expansion of Gr. inflata across the North Atlantic and the Mediterranean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the redistribution of terrigenous materials in the northeastern (NE) South American continental margin during slowdown events of the Atlantic Meridional Overturning Circulation (AMOC). The compilation of stratigraphic data from 108 marine sediment cores collected across the western tropical Atlantic shows an extreme rise in sedimentation rates off the Parnaíba River mouth (about 2°S) during Heinrich Stadial 1 (HS1, 18-15 ka). Sediment core GeoB16206-1, raised offshore the Parnaíba River mouth, documents relatively constant 143Nd/144Nd values (expressed as epsilonNd(0)) throughout the last 30 ka. Whereas the homogeneous epsilonNd(0) data support the input of fluvial sediments by the Parnaíba River from the same source area directly onshore, the increases in Fe/Ca, Al/Si and Rb/Sr during HS1 indicate a marked intensification of fluvial erosion in the Parnaíba River drainage basin. In contrast, the epsilonNd(0) values from sediment core GeoB16224-1 collected off French Guiana (about 7°N) suggest Amazon-sourced materials within the last 30 ka. We attribute the extremely high volume of terrigenous sediments deposited offshore the Parnaíba River mouth during HS1 to (i) an enhanced precipitation in the catchment region and (ii) a reduced North Brazil Current, which are both associated with a weakened AMOC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

50 m of Middle Eocene pure radiolarian ooze were drilled at ODP Site 660 in the equatorial East Atlantic, 80 km northeast of the Kane Gap. The oozes comprise a 10 m high and 2 km broad mound of seismic reverberations, covered by manganese-rich sediment, and contain trace amounts of sponge spicules and diatoms, negligible organic carbon (0.15%), clay, and variable amounts of pyrite. The yellow to pale brown silty sediments are relatively coarse-grained (30-45% coarser than 6 µm), little bioturbated, and commonly massive or laminated on a cm-scale. The unlithified radiolarian ooze may indicate an interval of high oceanic productivity, probably linked to a palaeoposition of Site 660 close to the equatorial upwelling belt during Middle Eocene time. The absence of organic matter, however, and both the laminated bedding and the mound-like structure of the deposit on the lower slope of a continental rise indicate deposition by relatively intense contour currents of oxygen-rich deep water, which passed through the Kane Gap, winnowed the fine clay fraction, and prevented the preservation of organic carbon. The ooze may be either a contourite-lag deposit, or a contourite accumulation of displaced radiolarians, originating south of the Kane Gap and being deposited in its northern lee, thus documenting the passage of a strong cross-equatorial bottom-water current formed near Antarctica. These Eocene contourites may be an analogue for ancient radiolarites in the Tethyan Ocean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The magnitude and the chronology of anthropogenic impregnation by Hg and other trace metals of environmental concern (V, Cr, Ni, Cu, Zn, Ag, Cd and Pb, including its stable isotopes) in the sediments are determined at the DYFAMED station, a site in the Ligurian Sea (Northwestern Mediterranean) chosen for its supposed open-sea characteristics. The DYFAMED site (VD) is located on the right levee of the Var Canyon turbidite system, at the end of the Middle Valley. In order to trace the influence of the gravity current coming from the canyon on trace metal distribution in the sediment, we studied an additional sediment core (VA) from a terrace of the Var Canyon, and material collected in sediment traps at the both sites at 20 m above sea bottom. The patterns of Hg and other trace element distribution profiles are interpreted using stable Pb isotope ratios as proxies for its sources, taking into account the sedimentary context (turbidites, redox conditions, and sedimentation rates). Major element distributions, coupled with the stratigraphic examination of the sediment cores point out the high heterogeneity of the deposits at VA, and major turbiditic events at both sites. At the DYFAMED site, we observed direct anthropogenic influence in the upper sediment layer (<2 cm), while on the Var Canyon site (VA), the anthropization concerns the whole sedimentary column sampled (19 cm). Turbiditic events superimpose their specific signature on trace metal distributions. According to the 210Pbxs-derived sedimentation rate at the DYFAMED site (0.4 mm yr-1), the Hg-enriched layer of the top core corresponds to the sediment accumulation of the last 50 years, which is the period of the highest increase in Hg deposition on a global scale. With the hypothesis of the absence of significant post-depositional redistribution of Hg, the Hg/C-org ratio changes between the surface and below are used to estimate the anthropogenic contribution to the Hg flux accumulated in the sediment. The Hg enrichment, from pre-industrial to the present time is calculated to be around 60%, consistent with estimations of global Hg models. However, based on the chemical composition of the trapped material collected in sediment traps, we calculated that epibenthic mobilization of Hg would reach 73%. Conversely, the Cd/C-org ratio decreases in the upper 5 cm, which may reflect the recent decrease of atmospheric Cd inputs or losses due to diagenetic processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vertical distribution of meso- and macroplankton was studied in the region of the most sharply pronounced climatic frontal zone between the Gulf Stream and the Labrador current. Hauls with a plankton net BR 113/140 and visual counts of macroplankton from the Mir submersible were used. In the frontal zone a contact occurs between arctic-boreal communities and communities of the North Atlantic subtropical gyre. The community of the North Atlantic subtropical gyre is more mature in terms of succession; many macroplanktonic carnivores-scavengers (mainly shrimps Acanthephyra) develop there and form a ''living network'' feeding on those transported from the north rich arctic-boreal mesoplankton. As a result biomass of shrimps appears to be significantly higher than biomass of their preys. Peculiarities of vertical distribution and population structure of shrimps were analyzed. Data on quantitative vertical distribution of total biomass of meso- and macroplankton and its principal groups, including gelatinous animals (ctenophores, medusas, and siphonophores) were obtained. Variations of the role of different plankton groups with depth were considered; these data enable a conclusion that frontal variations of the community structure embrace the depth range from the surface down to 2000 m.