140 resultados para cyanoacetylene ro-vibrational spectroscopy spectral analysis
Resumo:
A study of lead distribution in recent, ancient Black Sea and Neweuxinian bottom sediment shows similar vertical distributions of the element in the oxygen and hydrogen sulfide zones of the sea; i.e. hydrogen sulfide contamination does not affect lead contents in bottom sediments of the sea. Lead distribution in sediment mass of the Black Sea reflects dependence of accumulation of the element on the hydrodynamic regime of the sea and forms of its migration. It is noted that absence of lead accumulation in Black Sea nodules results from specific nodule formation and from geochemical activity of the element. A large role of diagenetic sulfide formation in lead geochemistry is shown. Degree of lead accumulation in iron sulfides depends on conditions of sedimentation and on physical and chemical parameters in the sea.
Resumo:
We studied the biological response to orbital forcing in marine Upper Albian sediments recovered from the 245 m-long Kirchrode I borehole in the Lower Saxony basin in northwestern Germany. Results from quantitative analysis of planktonic and benthic foraminifera, of calcareous nannofossils, and radiolaria were used for this study. Spectral analysis in the depth domain indicates for the high sedimentation rate part of the Upper Albian dominant periods with wavelengths of 10±13 m, 5±6 m, and 2±3 m, which we interpret to represent the biological response to orbital forcing in the Milankovitch frequency bands eccentricity, obliquity, and precession, respectively. In addition, a low amplitude 40±50 m cycle was found, which would represent the long-term eccentricity variation of roughly 400 ka. Microfossil cyclicity does not change significantly within the whole core indicating sedimentation rates of 11±12 cm/ka on an average, with variations between 3.5 and 13 ka. Microfossils show greater variability in their abundance changes than the physical and chemical parameters and also greater power in the higher-frequency bands (obliquity and precession). While most of the planktonic foraminifer species studied are dominated by variations in the obliquity, most benthic foraminifer species show an additional strong influence of precession. These differences in the cyclicity of the abundance changes are interpreted as reflecting a stronger influence of low latitude water in the deep waters of the Late Albian Lower Saxony basin than in the shallow waters. This basin was part of a wide, 'Boreal' epicontinental sea, which was connected to the Tethys to the south via the Polish strait and via the Paris basin, and which was connected with the North Atlantic and Arctic to the north. In analogy to results from analysis of data from the Late Neogene, strong effects of precession interpreted as being more characteristic for changes/influences triggered in the low latitudes and those of obliquity to be more characteristic for influences from the high latitudes. The presence of a relatively strong eccentricity cycle, not only in the compound parameters, but also in the abundance changes of single species during the Late Albian means that there must have been a non-linear response to orbital forcing and internal feedbacks.
Resumo:
Mineral and chemical compositions, as well as conditions of formation of clay sediments in major structural elements of the Pacific Ocean floor with different ages are under consideration in the monograph. Depending on evolution of the region two ways of clay sediment formation are identified: terrigenous and authigenic. It is shown that terrigenous clay sediments predominate in marginal parts of the Pacific Ocean. Authigenic mineral formation occurring in the basal part of the sedimentary cover primarily results from removal of material from underlying basalts. This material is released during secondary alteration of the basalts due to their interaction with sea water, as well as with deep solutions.
Resumo:
Sedimentary cycles are observed in the nearly complete Lower Cretaceous to Eocene pelagic carbonates at Site 762 on the Exmouth Plateau off northwest Australia. The high-frequency cycles of variable clay and foraminifers in nannofossil chalk appear as color cycles repeating on a scale of centimeters to meters in thickness. Measured cycle thickness indicate that the dominant cycles appear to be related to the precession and obliquity periods. To evaluate the high-frequency variance observed on the gamma-ray curve, spectral analysis of the log was performed on two intervals: 260 to 365 mbsf in the Cenozoic, and 555 to 685 mbsf in the Mesozoic. Average Cenozoic sedimentation rates of 10.5 m/m.y. are high enough to show that variance is present in the full suite of eccentricity bands (413-123-95 k.y.). Spectral analysis of the Mesozoic section failed to produce dominant peaks that could be correlated to predicted orbital periods. The bioturbation observed in the cores in this interval may be responsible for diluting the signal and producing high-frequency noise, which is manifested in the spectra as low, broad amplitude peaks. Orbital forcing may be affecting sedimentation on the Exmouth Plateau by influencing cycles of increased carbonate production or dissolution. Alternatively, clay abundance cycles may be related to eolian deposition during cycles of increased aridity in western Australia. Four low-frequency events were also identified at Site 762 from the core and log data. The duration of these events is approximately 13 m.y., and the conformable boundaries of these sedimentary cycles correlate with observed nondepositional surfaces in other wells in western Australia. The causal mechanism for the onset of these events may be eustatic, but alternatively may be regional tectonism with associated circulation pattern changes.
Resumo:
The book is devoted to comprehensive study of composition of sediments from the North Pacific Ocean. The sediments have been divided characterized by their lithologic and facial types, grain size composition and mineralogy. Influence of volcanism on formation of mineral and chemical composition of these sediments has been shown. Regularities of distribution of sediment accumulation rates and of a number of chemical elements on the Transpacific profile have been found. Determining role of mechanical fractionation in their localization has been shown.
Resumo:
Detailed biostratigraphy in Site 1006 based on planktonic foraminifers and nannofossils shows large-scale sedimentation rate variability in the Florida Strait west of the Great Bahama Bank. A 'floating' cyclostratigraphy based mainly on resistivity logs and magnetic susceptibility data has been fixed to the biostratigraphy in the absence of magnetostratigraphy. The strongest orbital cycle present is the precessional beat, which is present in the borehole logs throughout the record. Counting the cycles resulted in an accurate time scale and thus a sedimentation rate time series. Spectral analysis of the sedimentation rate time series shows that the short-term cycle of eccentricity (~125 k.y.) and the long term cycle of eccentricity (~400 k.y.) are pervasive throughout the Miocene record, together with the long-term ~2-m.y. eccentricity cycle. The Great Bahama Bank produced pulses of shallow carbonate input once every precessional (sea level) cycle during the Miocene and perhaps two pulses per cycle in the early Pliocene. The amount of sediment exported in these pulses appears to be controlled by eccentricity modulation of the precessional amplitude and therefore the amplitude of the sea-level rise. Finally, an increase in sedimentation rate just after the Miocene/Pliocene boundary is attributed to a change in the location and strength of sediment drift currents in the Florida Strait due to reorganization of the currents following the closure of the Panama Isthmus.
Resumo:
The middle Miocene delta18O increase represents a fundamental change in earth's climate system due to a major expansion and permanent establishment of the East Antarctic Ice Sheet accompanied by some effect of deepwater cooling. The long-term cooling trend in the middle to late Miocene was superimposed by several punctuated periods of glaciations (Mi-Events) characterized by oxygen isotopic shifts that have been related to the waxing and waning of the Antarctic ice-sheet and bottom water cooling. Here, we present a high-resolution benthic stable oxygen isotope record from ODP Site 1085 located at the southwestern African continental margin that provides a detailed chronology for the middle to late Miocene (13.9-7.3 Ma) climate transition in the eastern South Atlantic. A composite Fe intensity record obtained by XRF core scanning ODP Sites 1085 and 1087 was used to construct an astronomically calibrated chronology based on orbital tuning. The oxygen isotope data exhibit four distinct delta18O excursions, which have astronomical ages of 13.8, 13.2, 11.7, and 10.4 Ma and correspond to the Mi3, Mi4, Mi5, and Mi6 events. A global climate record was extracted from the oxygen isotopic composition. Both long- and short-term variabilities in the climate record are discussed in terms of sea-level and deep-water temperature changes. The oxygen isotope data support a causal link between sequence boundaries traced from the shelf and glacioeustatic changes due to ice-sheet growth. Spectral analysis of the benthic delta18O record shows strong power in the 400-kyr and 100-kyr bands documenting a paleoceanographic response to eccentricity-modulated variations in precession. A spectral peak around 180-kyr might be related to the asymmetry of the obliquity cycle indicating that the response of the dominantly unipolar Antarctic ice-sheet to obliquityinduced variations probably controlled the middle to late Miocene climate system. Maxima in the delta18O record, interpreted as glacial periods, correspond to minima in 100-kyr eccentricity cycle and minima in the 174-kyr obliquity modulation. Strong middle to late Miocene glacial events are associated with 400-kyr eccentricity minima and obliquity modulation minima. Thus, fluctuations in the amplitude of obliquity and eccentricity seem to be the driving force for the middle to late Miocene climate variability.
Resumo:
Stable oxygen isotope data from four holes drilled at the Ocean Drilling Program Site 967, which is located on the lower northern slope of the Eratosthenes Seamount, provide a continuous record of Eastern Mediterranean surface-water conditions during the last 3.2 Ma. A high-resolution stratigraphy for the Pliocene-Pleistocene sequence was established by using a combination of astronomical calibration of sedimentary cycles, nannofossil stratigraphy, and stable oxygen isotope fluctuations. Sapropels and color cycles are present throughout the last 3.2 Ma at Site 967, and their ages, as determined by calibration against the precessional component of the astronomical record, are consistent with those estimated for the sapropels of the classical land-based marine sequences of the Punta Piccola, San Nicola, Singa, and Vrica sections (southern Italy). The Site 967 oxygen isotope record shows large amplitude fluctuations mainly caused by variations in surface water salinity throughout the entire period. Spectral analysis shows that fluctuations in the d18O record were predominantly influenced by orbital obliquity and precessional forcing from 3.2 to 1 Ma, and all main orbital frequencies characterize the d18O record for the last million years. The start of sapropel formation at 3.2 Ma indicates a possible link between sapropel formation and the build up of northern hemisphere ice sheets. The dominance of the obliquity cycle in the interval from 3.2-1 Ma further points to the sensitivity of Eastern Mediterranean climate to the fluctuations in the volume of Arctic ice sheets. An intensification of negative isotope anomalies at Site 967, relative to the open ocean, supports a link between high run-off (during warm periods) and sapropel formation. freshwater input would have inhibited deep-water formation, which led to stagnation of deeper waters. Comparison with the land sections also confirms that differential preservation and diagenesis play a key role in sapropel occurrence.
Resumo:
Well-developed Campanian to Maestrichtian pelagic cyclic sediments were recovered from Hole 762C on the Exmouth Plateau, off northwest Australia, during Ocean Drilling Program Leg 122. The cycles consist of nannofossil chalk (light beds) and clayey nannofossil chalk (dark beds). Both light and dark beds are strongly to moderately bioturbated, alternate on a decimeter scale, and exhibit gradual boundaries. Bioturbation introduces materials from a bed of one color into an underlying bed of another color, indicating that diagenesis is not responsible for the cyclicity. Differences in composition between the light and dark beds, revealed by calcium carbonate measurement and X-ray diffraction analysis, together with trace fossil evidence, indicate that the cycles in the sediments are a depositional feature. Diagenetic processes may have intensified the appearance of the cycles. Spectral analysis was applied to the upper Campanian to lower Maestrichtian cyclic sediments to examine the regularity of the cycles. Power spectra were calculated from time series using Walsh spectral analysis. The most predominant wavelengths of the color cycles are 34-41 cm and 71-84 cm. With an average sedimentation rate of 1.82 cm/k.y. in this interval, we found the time durations of the cycles to be around 41 k.y. and 21 k.y., respectively, comparable to the obliquity and precession periods of the Earth's rotation, which strongly suggests an orbital origin for the cycles. On the basis of sedimentological evidence and plate tectonic reconstruction, we propose the following mechanism for the formation of the cyclic sediments from Hole 762C. During the Late Cretaceous, when there was no large-scale continental glaciation, the cyclic variations in insolation, in response to cyclic orbital changes, controlled the alternation of two prevailing climates in the area. During the wetter, equable, and warmer climatic phases under high insolation, more clay minerals and other terrestrial materials were produced on land and supplied by higher runoff to a low bioproductivity ocean, and the dark clayey beds were deposited. During the drier and colder climatic phases under low insolation, fewer clay minerals were produced and put into the ocean, where bioproductivity was increased and the light beds were deposited.
Resumo:
The monograph presents results of comprehensive geological and geophysical studies carried out in 1973 and 1976 during Cruises 54 and 58 of R/V "Vityaz" in the Eastern Indian Ocean. On the base of obtained data a description of topography, magnetic and gravity fields, structure of the sedimentary series and deep crustal structure of the East Indian Ridge, Central, West Australian and Cocos Basins, the Sunda Trench has been done. Materials on petrography, petrochemistry and geochemistry of igneous rocks in the region have been summarized. New geological and geophysical information has been compared with with DSDP materials. Tectonics and geological history of the Eastern Indian Ocean are under consideration.