86 resultados para SPHERICAL-SHELL
Resumo:
The hatching process of the Pacific abalone Haliotis discus hannai was prolonged at a pH of 7.6 and pH 7.3, and the embryonic developmental success was reduced. The hatching rate at pH 7.3 was significantly (10.8%) lower than that of the control (pH 8.2). The malformation rates at pH 7.9 and pH 8.2 were less than 20% but were 53.8% and 77.3% at pH 7.6 and pH 7.3, respectively. When newly hatched larvae were incubated for 48 h at pH 7.3, only 2.7% of the larvae settled, while more than 70% of the larvae completed settlement in the other three pH treatments. However, most 24 h old larvae could complete metamorphosis in all four pH treatments. Overall, a 0.3-unit reduction in water pH will produce no negative effect on the early development of the Pacific abalone, but further reduction in pH to the values predicted for seawater by the end of this century will have strong detrimental effects.
Resumo:
The identification in various proxy records of periods of rapid (decadal scale) climate change over recent millennia, together with the possibility that feedback mechanisms may amplify climate system responses to increasing atmospheric CO2, highlights the importance of a detailed understanding, at high spatial and temporal resolutions, of forcings and feedbacks within the system. Such an understanding has hitherto been limited because the temperate marine environment has lacked an absolute timescale of the kind provided by tree-rings for the terrestrial environment and by corals for the tropical marine environment. Here we present the first annually resolved, multi-centennial (489-year), absolutely dated, shell-based marine master chronology. The chronology has been constructed by detrending and averaging annual growth increment widths in the shells of multiple specimens of the very long-lived bivalve mollusc Arctica islandica, collected from sites to the south and west of the Isle of Man in the Irish Sea. The strength of the common environmental signal expressed in the chronology is fully comparable with equivalent statistics for tree-ring chronologies. Analysis of the 14C signal in the shells shows no trend in the marine radiocarbon reservoir correction (DR), although it may be more variable before ~1750. The d13C signal shows a very significant (R**2 = 0.456, p < 0.0001) trend due to the 13C Suess effect.
Resumo:
Specimens of the patellogastropod limpet Patella caerulea were collected within (pHlow-shells) and outside (pHn-shells) a CO2 vent site at Ischia, Italy. Four pHlow-shells and four pHn-shells were sectioned transversally and scanned for polymorph distribution by means of confocal Raman microscopy. The pHlow-shells displayed a twofold increase in aragonite area fraction and size-normalised aragonite area. Size-normalised calcite area was halved in pHlow-shells. Taken together with the increased apical and the decreased flank size-normalised thickness of the pHlow-shells, these data led us to conclude that low-pH-exposed P. caerulea specimens counteract shell dissolution by enhanced shell production. This is different from normal elongation growth and proceeds through addition of aragonitic parts only, while the production of calcitic parts is confined to elongation growth. Therefore, aragonite cannot be regarded as a disadvantageous polymorph per se under ocean acidification conditions.
Resumo:
Using shells collected from a sediment trap series in the Madeira Basin, we investigate the effects of seasonal variation of temperature, productivity, and optimum growth conditions on calcification in three species of planktonic Foraminifera. The series covers an entire seasonal cycle and reflects conditions at the edge of the distribution of the studied species, manifesting more suitable growth conditions during different parts of the year. The seasonal variation in seawater carbonate saturation at the studied site is negligible compared to other oceanic regions, allowing us to assess the effect of parameters other than carbonate saturation. Shell calcification is quantified using weight and size of individual shells. The size-weight scaling within each species is robust against changes in environmental parameters, but differs among species. An analysis of the variation in calcification intensity (size-normalized weight) reveals species-specific response patterns. In Globigerinoides ruber (white) and Globigerinoides elongatus, calcification intensity is correlated with temperature (positive) and productivity (negative), whilst in Globigerina bulloides no environmental forcing is observed. The size-weight scaling, calcification intensity, and response of calcification intensity to environmental change differed between G. ruber (white) and G. elongatus, implying that patterns extracted from pooled analyses of these species may reflect their changing proportions in the samples. Using shell flux as a measure of optimum growth conditions, we observe significant positive correlation with calcification intensity in G. elongatus, but negative correlation in G. bulloides. The lack of a consistent response of calcification intensity to optimum growth conditions is mirrored by the results of shell size analyses. We conclude that calcification intensity in planktonic Foraminifera is affected by factors other than carbonate saturation. These factors include temperature, productivity, and optimum growth conditions, but the strength and sign of the relationships differ among species, potentially complicating interpretations of calcification data from the fossil record.
Resumo:
Finding the ideal deep-sea CaCO3 dissolution proxy is essential for quantifying the role of the marine carbonate system in regulating atmospheric pCO2 over millennia. We explore the potential of using the Globorotalia menardii fragmentation index (MFI) and size-normalized foraminifer shell weight (SNSW) as complementary indicators of deep-sea CaCO3 dissolution. MFI has strong correlations with bottom water [CO3]2-, modeled estimates of percent CaCO3 dissolved, and Mg/Ca in Pulleniatina obliquiloculata in core top samples along a depth transect on the Ontong Java Plateau (OJP) where surface ocean temperature variation is minimal. SNSW of P. obliquiloculata and Neogloboquadrina dutertrei have weak correlations with MFI-based percent dissolved, Mg/Ca in P. obliquiloculata shells and bottom water [CO3]2- on the OJP. In core top samples from the eastern equatorial Pacific (EEP), SNSW of P. obliquiloculata has moderate to strong correlations with both MFI-based percent CaCO3 dissolved estimates and surface ocean environmental parameters. SNSW of N. dutertrei shells shows a latitudinal distribution in the EEP and a moderately strong correlation with MFI-based percent dissolved estimates when samples from the equatorial part of the region are excluded. Our results suggest that there may potentially be multiple genotypes of N. dutertrei in the EEP which may be reflected in their shell weight. MFI-based percent CaCO3 dissolved estimates have no quantifiable relationship with any surface ocean environmental parameter in the EEP. Thus MFI acts as a reliable quantitative CaCO3 dissolution proxy insensitive to environmental biases within calcification waters of foraminifers.
Resumo:
The present study investigated the effects of ocean acidification and temperature increase on Neogloboquadrina pachyderma (sinistral), the dominant planktonic foraminifer in the Arctic Ocean. Due to the naturally low concentration of [CO3] 2- in the Arctic, this foraminifer could be particularly sensitive to the forecast changes in seawater carbonate chemistry. To assess potential responses to ocean acidification and climate change, perturbation experiments were performed on juvenile and adult specimens by manipulating seawater to mimic the present-day carbon dioxide level and a future ocean acidification scenario (end of the century) under controlled (in situ) and elevated temperatures (1 and 4 °C, respectively). Foraminifera mortality was unaffected under all the different experiment treatments. Under low pH, N. pachyderma (s) shell net calcification rates decreased. This decrease was higher (30 %) in the juvenile specimens than decrease observed in the adults (21 %) ones. However, decrease in net calcification was moderated when both, pH decreased and temperature increased simultaneously. When only temperature increased, a net calcification rate for both life stages was not affected. These results show that forecast changes in seawater chemistry would impact calcite production in N. pachyderma (s), possibly leading to a reduction of calcite flux contribution and consequently a decrease in biologic pump efficiency.